ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Точки Е и F – середины сторон ВС и AD выпуклого четырёхугольника АВСD. Докажите, что отрезок EF делит диагонали АС и BD в одном и том же отношении. Решение |
Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 460]
Точки Е и F – середины сторон ВС и AD выпуклого четырёхугольника АВСD. Докажите, что отрезок EF делит диагонали АС и BD в одном и том же отношении.
В круге проведены две хорды AB и CD, пересекающиеся в точке
M; K – точка пересечения биссектрисы угла BMD с хордой BD.
В окружность вписана трапеция ABCD, причём её основания AB = 1 и DC = 2. Обозначим точку пересечения диагоналей этой трапеции через F. Найдите отношение суммы площадей треугольников ABF и CDF к сумме площадей треугольников AFD и BCF.
В треугольнике ABC биссектриса AH пересекает высоты BP и CT в точках K и M соответственно, причём эти точки лежат внутри треугольника. Известно, что
В трапеции ABCD диагонали AC и DB взаимно перпендикулярны, ∠ABD = ∠ACD. На продолжениях боковых сторон AB и DC за большее основание AD отложены отрезки AM и DN так, что получается новая трапеция MADN, подобная трапеции ABCD. Найдите площадь трапеции MBCN, если площадь трапеции ABCD равна S, а сумма углов при большем основании равна 150°.
Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 460] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|