ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан треугольник со сторонами a, b и c, причём a ≥ b ≥ c; x, y и z – углы некоторого другого треугольника. Докажите, что bc + ca – ab < bc cos x + ca cos y + ab cos z ≤ ½ (a² + b² + c²). а) Доказать, что из трёх положительных чисел всегда можно выбрать такие два
числа x и y, что 0 ≤ Дана функция Сколькими способами можно заполнить одну карточку в лотерее "Спортпрогноз"? (В этой лотерее нужно предсказать итог тринадцати спортивных матчей. Итог каждого матча – победа одной из команд либо ничья; счёт роли не играет). Отличник Поликарп купил общую тетрадь объёмом 96 листов и пронумеровал все её страницы по порядку числами от 1 до 192. Двоечник Колька вырвал из этой тетради 25 листов и сложил все 50 чисел, которые на них написаны. В ответе у Кольки получилось 2002. Не ошибся ли он? По кругу написано семь натуральных чисел. Докажите, что найдутся два соседних числа, сумма которых чётна. Каждую клетку квадратной таблицы 2×2 можно покрасить в чёрный или белый цвет. Сколько существует различных раскрасок этой таблицы? Найти количество нечётных чисел в n-й строке треугольника Паскаля. В футбольной команде (11 человек) нужно выбрать капитана и его заместителя. Сколькими способами это можно сделать? Найдите наибольшее значение выражения
x При каких значениях n все коэффициенты в разложении бинома Ньютона (a + b)n нечётны? Многоугольник, описанный около окружности радиуса r,
разрезан на треугольники (произвольным образом). Докажите, что сумма
радиусов вписанных окружностей этих треугольников больше r.
Монету бросают трижды. Сколько разных последовательностей орлов и решек можно при этом получить? Докажите, что диагонали четырёхугольника перпендикулярны тогда и только тогда, когда суммы квадратов его противоположных сторон равны. В прямоугольной трапеции отношение диагоналей равно 2, а отношение оснований равно 4. Найдите углы трапеции. O – центр окружности, C – точка пересечения хорды AB и радиуса OD, перпендикулярного к ней, OC = 9, CD = 32. Найдите длину хорды. В прямоугольном треугольнике точка касания вписанной окружности делит гипотенузу на отрезки, равные 5 и 12. Найдите катеты треугольника. Рассмотрим два различных четырёхугольника с соответственно равными сторонами. Даны треугольник ABC (AB > AC) и описанная около него окружность. Постройте циркулем и линейкой середину дуги BC (не содержащей вершину A), проведя не более двух линий.
В треугольнике ABC стороны AC и BC не равны. Докажите, что
биссектриса угла C делит пополам угол между медианой и высотой,
проведёнными из вершины C, тогда и только тогда, когда
|
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 44]
Четырёхугольник ABCD вписан в окружность S с центром O . Биссектриса угла ABD пересекает сторону AD и окружность S в точках K и M соответственно. Биссектриса угла CBD пересекает сторону CD и окружность S в точках L и N соответственно. Известно, что прямые KL и MN параллельны. Докажите, что описанная окружность треугольника MON проходит через середину отрезка BD .
В остроугольном треугольнике отметили отличные от
вершин точки пересечения описанной окружности с высотами,
проведенными из двух вершин, и биссектрисой, проведенной из
третьей вершины, после чего сам треугольник стерли. Восстановите
его.
Дана окружность и точка O на ней. Вторая окружность с центром O пересекает первую в точках P и Q. Точка C лежит на первой окружности, а прямые CP, CQ вторично пересекают вторую окружность в точках A и B. Докажите, что AB = PQ.
В треугольнике ABC стороны AC и BC не равны. Докажите, что
биссектриса угла C делит пополам угол между медианой и высотой,
проведёнными из вершины C, тогда и только тогда, когда
Прямая, соединяющая центр описанной окружности и точку пересечения высот неравнобедренного треугольника, параллельна биссектрисе одного из его углов. Чему равен этот угол?
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 44]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке