ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Треугольники ABC и ADC имеют общую сторону AC; стороны AD и BC пересекаются в точке M. Углы B и D равны по 40°. Расстояние между вершинами D и B равно стороне AB, ∠AMC = 70°. Найдите углы треугольников ABC и ADC. Решение |
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 1274]
В окружность вписан четырёхугольник ABCD, причём AB является диаметром окружности. Диагонали AC и BD пересекаются в точке M. Известно, что BC = 3, CM = ¾, а площадь треугольника ABC втрое больше площади треугольника ACD. Найдите AM.
Из точки A проведены секущая и касательная к окружности радиуса R. Пусть B – точка касания, а D и C – точки пересечения секущей с окружностью, причём точка D лежит между A и C. Известно, что BD – биссектриса угла B треугольника ABC и её длина равна R. Найдите расстояние от точки A до центра окружности.
Треугольники ABC и ADC имеют общую сторону AC; стороны AD и BC пересекаются в точке M. Углы B и D равны по 40°. Расстояние между вершинами D и B равно стороне AB, ∠AMC = 70°. Найдите углы треугольников ABC и ADC.
В треугольнике ABC BC = 4, AB = 2 . Известно, что центр окружности, проходящей через середины сторон треугольника, лежит на биссектрисе угла C. Найдите AC.
На высоте CE, опущенной из вершины C прямоугольного треугольника ABC на гипотенузу AB, как на диаметре построена окружность, которая пересекает катет BC в точке K. Найдите площадь треугольника BKE, если катет BC равен a и угол BAC равен .
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 1274] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|