ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Треугольники ACC1 и BCC1 равны. Их вершины A и B лежат по разные стороны от прямой CC1. На окружности отмечено 100 точек. Может ли при этом оказаться ровно 1000 прямоугольных треугольников, все вершины которых — отмеченные точки? Можно ли разбить множество целых чисел на три подмножества так, чтобы для любого целого значения n числа n, n - 50, n + 1987 принадлежали трём разным подмножествам? Докажите, что треугольники abc и a'b'c' собственно подобны, тогда и только тогда, когда
a'(b - c) + b'(c - a) + c'(a - b) = 0.
Пусть A — произвольный угол, B и C — острые углы. Всегда ли существует такой угол X, что
sin X =
(Из `` Воображаемой геометрии'' Н. И. Лобачевского).
На одной из медиан треугольника $ABC$ нашлась такая точка $P$, что $\angle PAB=\angle PBC=\angle PCA$. Докажите, что на другой медиане найдется такая точка $Q$, что $\angle QBA=\angle QCB=\angle QAC$. Пусть x, y, z – любые числа из интервала (0, π/2). Докажите неравенство На плоскости даны три попарно пересекающиеся окружности. Через точки пересечения каждых двух из них проведена прямая. Назовём непустое (конечное или бесконечное) множество A, состоящее из действительных чисел, полным, если для любых действительных a и b (не обязательно различных и не обязательно лежащих в A), при которых a + b лежит в A, число ab также лежит в A. Найдите все полные множества действительных чисел. С помощью одного циркуля постройте окружность, проходящую через три данные точки.
Докажите, что прямая, проходящая через точки a1 и a2, задаётся уравнением
z(
Пусть
Назовем натуральное число "изумительным", если оно имеет вид ab + ba (где a и b - натуральные числа). Например, число 57 - изумительное, так как 57 = 25 + 52. Является ли изумительным число 2006? С помощью одного циркуля постройте окружность, в которую переходит данная
прямая AB при инверсии относительно данной окружности
с данным центром O.
С помощью циркуля и линейки постройте треугольник по углу, высоте и биссектрисе, проведённым из вершины этого угла.
Две окружности с центрами O1 и O2 пересекаются
в точках A и B. Через точку A проведена прямая, пересекающая
первую окружность в точке M1, а вторую в точке M2.
Докажите, что
Пусть a и b — комплексные числа, лежащие на окружности с центром в нуле,
u — точка пересечения касательных к этой окружности в точках a и b.
Докажите, что
u = 2ab/(a + b).
Пусть f(x) – многочлен степени m. Докажите, что если m < n, то Δnf(x) = 0. Чему равна величина Δmf(x)? В день рождения дяди Федора почтальон Печкин хочет выяснить, сколько тому лет. Шарик говорит, что дяде Федору больше 11 лет, а кот Матроскин утверждает, что больше 10 лет. Сколько лет дяде Федору, если известно, что ровно один из них ошибся? Ответ обоснуйте. По кругу стоят n мальчиков и n девочек. Назовём пару из мальчика и девочки хорошей, если на одной из дуг между ними стоит поровну мальчиков и девочек (в частности, стоящие рядом мальчик и девочка образуют хорошую пару). Оказалось, что есть девочка, которая участвует ровно в 10 хороших парах. Докажите, что есть и мальчик, который участвует ровно в 10 хороших парах. Не используя калькулятора, определите знак числа (cos(cos 1) – cos 1)(sin(sin 1) – sin 1). Докажите, что все корни уравнения a(z – b)n = c(z – d )n, где a, b, c, d – заданные комплексные числа, расположены на одной окружности или прямой. Для всякого ли выпуклого четырёхугольника найдётся окружность, пересекающая каждую его сторону в двух внутренних точках? Докажите, что у равных треугольников ABC и A1B1C1: |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 352]
Отрезки AB и CD пересекаются в точке O. Докажите равенство треугольников ACO и DBO, если известно, что ∠ACO = ∠DBO и BO = OC.
Отрезки AC и BD пересекаются в точке O. Докажите равенство треугольников BAO и DCO, если известно, что ∠BAO = ∠DCO и AO = OC.
Треугольники ACC1 и BCC1 равны. Их вершины A и B лежат по разные стороны от прямой CC1.
Докажите, что у равных треугольников ABC и A1B1C1:
Докажите признак равенства треугольников по углу, биссектрисе этого угла и стороне, прилежащей к этому углу.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 352]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке