ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике ABC известны углы:  ∠A = 45°,  ∠B = 15°. На продолжении стороны AC за точку C взята точка M, причём  CM = 2AC.  Найдите  ∠AMB.

   Решение

Задачи

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 207]      



Задача 101881

Темы:   [ Вспомогательные подобные треугольники ]
[ Пересекающиеся окружности ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Вписанный угол равен половине центрального ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4-
Классы: 8,9

Две окружности с центрами O и Q, пересекающиеся друг с другом в точках A и B, пересекают биссектрису угла OAQ в точках C и D соответственно. Отрезки OQ и AD пересекаются в точке E, причём площади треугольников OAE и QAE равны 49 и 21 соответственно. Найдите площадь четырёхугольника OAQD и отношение  BC : BD.

Прислать комментарий     Решение

Задача 108909

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Угол между касательной и хордой ]
[ Три точки, лежащие на одной прямой ]
[ Вписанный угол равен половине центрального ]
[ Величина угла между двумя хордами и двумя секущими ]
[ Биссектриса делит дугу пополам ]
Сложность: 4-
Классы: 8,9

Дана окружность Ω и точка P вне её. Проходящая через точку P прямая l пересекает окружность в точках A и B. На отрезке AB отмечена такая точка C, что  PA·PB = PC². Точки M и N – середины двух дуг, на которые хорда AB разбивает окружность Ω. Докажите, что величина угла MCN не зависит от выбора прямой l.

Прислать комментарий     Решение

Задача 116647

Темы:   [ Параллелограммы (прочее) ]
[ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Вписанный угол равен половине центрального ]
[ Симметрия помогает решить задачу ]
[ Вспомогательные подобные треугольники ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4-
Классы: 9,10,11

На стороне BC параллелограмма ABCD  (∠A < 90°)  отмечена точка T так, что треугольник ATD – остроугольный. Пусть O1, O2 и O3 – центры описанных окружностей треугольников ABT, DAT и CDT соответственно (см. рисунок).

Докажите, что ортоцентр треугольника O1O2O3 лежит на прямой AD.

Прислать комментарий     Решение

Задача 116760

Темы:   [ Вписанные и описанные окружности ]
[ Признаки равенства прямоугольных треугольников ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанный угол равен половине центрального ]
[ Углы между биссектрисами ]
Сложность: 4-
Классы: 9,10

Точки A1, B1, C1 выбраны на сторонах BC, CA и AB треугольника ABC соответственно. Оказалось, что  AB1AC1 = CA1CB1 = BC1BA1.  Пусть IA, IB и IC – центры окружностей, вписанных в треугольники AB1C1, A1BC1 и A1B1C, соответственно. Докажите, что центр описанной окружности треугольника IAIBIC совпадает с центром вписанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 53360

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанный угол равен половине центрального ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 4
Классы: 8,9

В треугольнике ABC известны углы:  ∠A = 45°,  ∠B = 15°. На продолжении стороны AC за точку C взята точка M, причём  CM = 2AC.  Найдите  ∠AMB.

Прислать комментарий     Решение

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 207]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .