ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Выразите площадь треугольника ABC через длину
стороны BC и величины углов B и C.
Биссектриса треугольника делит одну из его сторон на отрезки 3 см и 5 см. В каких границах изменяется периметр треугольника? Равные хорды окружности с центром O пересекаются в точке M. Докажите, что MO – биссектриса угла между ними. Окружность касается боковых сторон трапеции $ABCD$ в точках $B$ и $C$, а её центр лежит на $AD$. Докажите, что диаметр окружности меньше средней линии трапеции. Даны две пересекающиеся окружности радиуса R, причем
расстояние между их центрами больше R. Докажите, что
β = 3α (рис.).
Найдите геометрическое место точек, разность расстояний от которых до двух данных непараллельных прямых имеет данную величину. В равнобедренном треугольнике АВС угол В равен 30°, АВ = ВС = 6. Проведены высота CD треугольника АВС и высота DE треугольника BDC. Известно, что уравнение ax5 + bx4 + c = 0 имеет три различных корня. Докажите, что уравнение cx5 + bx + a = 0 также имеет три различных корня. Окружность, построенная на биссектрисе AD треугольника ABC как на диаметре, пересекает стороны AB и AC соответственно в точках M и N, отличных от A. Докажите, что AM = AN. В прямоугольном треугольнике ABC биссектриса прямого угла B
пересекает гипотенузу AC в точке M.
Дана линейка постоянной ширины (т.е. с параллельными краями) и без делений. Постройте биссектрису данного угла.
В равнобедренном треугольнике центр вписанной окружности делит высоту в отношении 17 : 15. Основание равно 60. Найдите радиус этой окружности. Дан прямоугольный треугольник ABC с прямым углом при вершине C. ∠A = α, биссектриса угла B пересекает катет AC в точке K. На стороне BC как на диаметре построена окружность, которая пересекает гипотенузу AB в точке M. Найдите угол AMK. К плоскости приклеены два непересекающихся деревянных круга одинакового размера – серый и чёрный. Дан деревянный треугольник, одна сторона которого серая, а другая – чёрная. Его передвигают так, чтобы круги были снаружи треугольника, причём серая сторона касалась серого круга, а чёрная – чёрного (касание происходит не в вершинах). Докажите, что прямая, содержащая биссектрису угла между серой и чёрной сторонами, всегда проходит через одну и ту же точку плоскости. Докажите, что средняя линия трапеции параллельна основаниям и равна их полусумме.
На продолжении медианы AM треугольника ABC за точку M отложен отрезок MD, равный AM. Докажите, что четырёхугольник ABDC — параллелограмм.
Найдите внутри треугольника ABC все такие точки P, чтобы общие хорды каждой пары окружностей, построенных на отрезках PA, PB и PC как на диаметрах, были равны. Основания трапеции равны a и b (a > b). Найдите длину отрезка, соединяющего середины диагоналей трапеции. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 107]
Высота равнобедренной трапеции ABCD с основаниями AD и
BC равна 4
Окружность, построенная на большей боковой стороне AB прямоугольной трапеции ABCD как на диаметре, пересекает основание AD в его середине. Известно, что AB=10 , CD=6 . Найдите среднюю линию трапеции.
Средняя линия трапеции равна 10 и делит площадь трапеции в отношении 3:5. Найдите основания трапеции.
Основания трапеции равны a и b (a > b). Найдите длину отрезка, соединяющего середины диагоналей трапеции.
Найдите отношение оснований трапеции, если известно, что её средняя линия делится диагоналями на три равные части.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 107]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке