ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Дан равносторонний треугольник со стороной a. Найдите отрезок, соединяющий вершину треугольника с точкой, делящей противоположную сторону в отношении 2 : 1.
В остроугольном треугольнике ABC угол C равен 60°, H – точка пересечения высот. Окружность с центром H и радиусом HC второй раз пересекает прямые CA и CB в точках M и N соответственно. Докажите, что прямые AN и BM параллельны (или совпадают). На стороне AB треугольника ABC дана точка P.
Проведите через точку P прямую (отличную от AB), пересекающую
лучи CA и CB в таких точках M и N, что AM = BN.
Ортогональные проекции треугольника ABC на две взаимно
перпендикулярные плоскости являются правильными треугольниками
со сторонами 1. Найдите периметр треугольника ABC , если
известно, что AB =
Пусть M и N — середины оснований трапеции. Докажите, что если прямая MN перпендикулярна основаниям, то трапеция — равнобедренная.
В треугольнике ABC отмечены середины сторон AC и BC – точки M и N соответственно. Угол MAN равен 15°, а угол BAN равен 45°. Найдите периметр четырехугольника ABCD, в котором
AB = CD = a,
Отрезки AB и CD пересекаются. Докажите, что если отрезки AC, CB, BD и AD равны, то луч AB является биссектрисой угла CAD, луч CD – биссектрисой угла ACB, а CD перпендикулярно AB.
Найдите углы и стороны четырёхугольника с вершинами в серединах сторон равнобедренной трапеции, диагонали которой равны 10 и пересекаются под углом 40o.
В треугольнике основание равно 12; один из углов при нём равен 120o; сторона против этого угла равна 28. Найдите третью сторону.
Два угла треугольника равны 50o и 100o. Под каким углом видна каждая сторона треугольника из центра вписанной окружности?
В треугольнике ABC проведены биссектрисы BB1
и CC1. Докажите, что если
Дан треугольник с периметром, равным 24. Найдите периметр треугольника с вершинами в серединах сторон данного. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 43]
Периметр треугольника равен 28, середины сторон соединены отрезками. Найдите периметр полученного треугольника.
Дан треугольник с периметром, равным 24. Найдите периметр треугольника с вершинами в серединах сторон данного.
Две равные касающиеся окружности с центрами O1 и O2 касаются внутренним образом окружности радиуса R с центром O.
Найдите периметр треугольника ABC, если известны координаты его вершин A(–3, 5), B(3, –3) и точки M(6, 1), являющейся серединой стороны BC.
Найдите периметр треугольника KLM, если известны координаты его вершин K(–4, –3), L(2, 5) и точки P(5, 1), являющейся серединой стороны LM.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 43]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке