Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Дан равносторонний треугольник со стороной a. Найдите отрезок, соединяющий вершину треугольника с точкой, делящей противоположную сторону в отношении 2 : 1.

Вниз   Решение


Автор: Зимин А.

В остроугольном треугольнике ABC угол C равен 60°, H – точка пересечения высот. Окружность с центром H и радиусом HC второй раз пересекает прямые CA и CB в точках M и N соответственно. Докажите, что прямые AN и BM параллельны (или совпадают).

ВверхВниз   Решение


На стороне AB треугольника ABC дана точка P. Проведите через точку P прямую (отличную от AB), пересекающую лучи CA и CB в таких точках M и N, что AM = BN.

ВверхВниз   Решение


Ортогональные проекции треугольника ABC на две взаимно перпендикулярные плоскости являются правильными треугольниками со сторонами 1. Найдите периметр треугольника ABC , если известно, что AB = .

ВверхВниз   Решение


Пусть M и N — середины оснований трапеции. Докажите, что если прямая MN перпендикулярна основаниям, то трапеция — равнобедренная.

ВверхВниз   Решение


В треугольнике ABC отмечены середины сторон AC и BC – точки M и N соответственно. Угол MAN равен 15°, а угол BAN равен 45°.
Найдите угол ABM.

ВверхВниз   Решение


Найдите периметр четырехугольника ABCD, в котором AB = CD = a, $ \angle$BAD = $ \angle$BCD = $ \alpha$ < 90o, BC $ \neq$ AD.

ВверхВниз   Решение


Отрезки AB и CD пересекаются. Докажите, что если отрезки AC, CB, BD и AD равны, то луч AB является биссектрисой угла CAD, луч CD – биссектрисой угла ACB, а CD перпендикулярно AB.

ВверхВниз   Решение


Найдите углы и стороны четырёхугольника с вершинами в серединах сторон равнобедренной трапеции, диагонали которой равны 10 и пересекаются под углом 40o.

ВверхВниз   Решение


В треугольнике основание равно 12; один из углов при нём равен 120o; сторона против этого угла равна 28. Найдите третью сторону.

ВверхВниз   Решение


Два угла треугольника равны 50o и 100o. Под каким углом видна каждая сторона треугольника из центра вписанной окружности?

ВверхВниз   Решение


В треугольнике ABC проведены биссектрисы BB1 и CC1. Докажите, что если  $ \angle$CC1B1 = 30o, то либо  $ \angle$A = 60o, либо  $ \angle$B = 120o.

ВверхВниз   Решение


Дан треугольник с периметром, равным 24. Найдите периметр треугольника с вершинами в серединах сторон данного.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 43]      



Задача 53552

Темы:   [ Средняя линия треугольника ]
[ Периметр треугольника ]
Сложность: 2+
Классы: 8,9

Периметр треугольника равен 28, середины сторон соединены отрезками. Найдите периметр полученного треугольника.

Прислать комментарий     Решение

Задача 54121

Темы:   [ Средняя линия треугольника ]
[ Периметр треугольника ]
Сложность: 2+
Классы: 8,9

Дан треугольник с периметром, равным 24. Найдите периметр треугольника с вершинами в серединах сторон данного.

Прислать комментарий     Решение

Задача 52737

Темы:   [ Касающиеся окружности ]
[ Периметр треугольника ]
Сложность: 3-
Классы: 8,9

Две равные касающиеся окружности с центрами O1 и O2 касаются внутренним образом окружности радиуса R с центром O.
Найдите периметр треугольника OO1O2.

Прислать комментарий     Решение

Задача 108524

Темы:   [ Метод координат на плоскости ]
[ Периметр треугольника ]
Сложность: 3-
Классы: 8,9

Найдите периметр треугольника ABC, если известны координаты его вершин  A(–3, 5),  B(3, –3)  и точки  M(6, 1),  являющейся серединой стороны BC.

Прислать комментарий     Решение

Задача 108525

Темы:   [ Метод координат на плоскости ]
[ Периметр треугольника ]
Сложность: 3-
Классы: 8,9

Найдите периметр треугольника KLM, если известны координаты его вершин  K(–4, –3),  L(2, 5)  и точки  P(5, 1),  являющейся серединой стороны LM.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 43]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .