Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Решите в комплексных числах уравнения:
  а)  z4 – 4z3 + 6z2 – 4z – 15 = 0;   б)  z3 + 3z2 + 3z + 3 = 0;   в)  z4 + (z – 4)4 = 32;   г)  

Вниз   Решение


В треугольнике ABC высота CD = 7, а высота AE = 6. Точка E делит сторону BC так, что BE : EC = 3 : 4. Найдите сторону AB.

ВверхВниз   Решение


Докажите, что произвольная последовательность Qn, заданная условиями

Q0 = $\displaystyle \alpha$,    Q1 = $\displaystyle \beta$,    Qn + 2 = Qn + 1 + Qn    (n $\displaystyle \geqslant$ 0),

может быть выражена через числа Фибоначчи Fn и числа Люка Ln (определение чисел Люка смотри в задаче 3.133).

ВверхВниз   Решение


Большая окружность вписана в ромб, каждая из двух меньших окружностей касается двух сторон ромба и большой окружности, как на рисунке. Через точки касания окружностей со сторонами ромба провели четыре штриховые прямые, как на рисунке. Докажите, что они образуют квадрат.

ВверхВниз   Решение


Основания равнобедренной трапеции равны a и b (a > b), острый угол равен 45o. Найдите площадь трапеции.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 1402]      



Задача 116352

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 3-
Классы: 8,9,10

В треугольнике ABC известны стороны BC = a, AC = b, AB = c и площадь S. Биссектрисы BM и CN пересекаются в точке O. Найдите площадь треугольника BOC.

Прислать комментарий     Решение

Задача 116469

Темы:   [ Вычисление площадей ]
[ Тождественные преобразования ]
Сложность: 3-
Классы: 5,6

Прямоугольник разделён двумя вертикальными и двумя горизонтальными отрезками на девять прямоугольных частей. Площади некоторых из получившихся частей указаны на рисунке. Найдите площадь верхней правой части.

Прислать комментарий     Решение

Задача 54233

Темы:   [ Площадь трапеции ]
[ Проекции оснований, сторон или вершин трапеции ]
Сложность: 3
Классы: 8,9

Основания равнобедренной трапеции равны a и b (a > b), острый угол равен 45o. Найдите площадь трапеции.

Прислать комментарий     Решение


Задача 54785

Темы:   [ Площадь трапеции ]
[ Средняя линия трапеции ]
Сложность: 3
Классы: 8,9

Докажите, что площадь трапеции равна произведению средней линии на высоту.

Прислать комментарий     Решение


Задача 54964

Тема:   [ Площадь трапеции ]
Сложность: 3
Классы: 8,9

Докажите. что если в трапеции ABCD середину M одной боковой стороны AB соединить с концами другой боковой стороны CD, то площадь полученного треугольника CMD составит половину площади трапеции.

Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 1402]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .