Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Найдите все шестизначные числа, которые уменьшаются втрое при перенесении последней цифры на первое место.

Вниз   Решение


Докажите, что отрезок, соединяющий вершину равнобедренного треугольника с точкой, лежащей на основании, не больше боковой стороны треугольника.

ВверхВниз   Решение


Окружности с центрами O1 и O2 пересекаются в точках A и B . Известно, что AO1B= 90o , AO2B = 60o , O1O2=a . Найдите радиусы окружностей.

ВверхВниз   Решение


В треугольнике две высоты не меньше сторон, на которые они опущены. Найдите углы треугольника.

ВверхВниз   Решение


Диагонали ромба равны 24 и 70. Найдите сторону ромба.

ВверхВниз   Решение


Через вершины A и B треугольника ABC проведены две параллельные прямые, а прямые m и n симметричны им относительно биссектрис соответствующих углов. Докажите, что точка пересечения прямых m и n лежит на описанной окружности треугольника ABC.

ВверхВниз   Решение


Для каждого непрямоугольного треугольника T обозначим через T1 треугольник, вершинами которого служат основания высот треугольника T; через T2 – треугольник, вершинами которого служат основания высот треугольника T1; аналогично определим треугольники T3, T4 и так далее. Каким должен быть треугольник T, чтобы
  а) треугольник T1 был остроугольным?
  б) в последовательности T1, T2, T3, ... встретился прямоугольный треугольник Tn (и таким образом треугольник Tn+1 не определён)?
  в) треугольник T3 был подобен треугольнику T?
  г) Для каждого натурального числа n выясните, сколько существует неподобных друг другу треугольников T, для которых треугольник Tn подобен треугольнику Т.

ВверхВниз   Решение


С помощью циркуля и линейки через данную внутри окружности точку проведите хорду, которая делилась бы этой точкой пополам.

ВверхВниз   Решение


В остроугольном треугольнике $ABC$ $CM$ – медиана, $P$ – проекция ортоцентра $H$ на биссектрису угла $C$. Докажите, что $MP$ делит отрезок $CH$ пополам.

ВверхВниз   Решение


У каждого из тридцати шестиклассников есть одна ручка, один карандаш и одна линейка. После их участия в олимпиаде оказалось, что 26 учеников потеряли ручку, 23 – линейку и 21 – карандаш. Найдите наименьшее возможное количество шестиклассников, потерявших все три предмета.

ВверхВниз   Решение


В пространстве (но не в одной плоскости) расположены шесть различных точек: A, B, C, D, E и F. Известно, что отрезки AB и DE, BC и EF, CD и FA попарно параллельны. Докажите, что эти же отрезки и попарно равны.

ВверхВниз   Решение



В правильную четырехугольную пирамиду вписана сфера, которая касается основания и всех боковых граней. Сфера делит высоту пирамиды в отношении 9 : 7, считая от вершины пирамиды. Найдите объем пирамиды, если сторона основания пирамиды равна a.

ВверхВниз   Решение


Найдите диагонали ромба, если они относятся как  3 : 4,  а периметр равен 1.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 501]      



Задача 54196

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 2+
Классы: 8,9

Найдите сторону квадрата, вписанного в окружность радиуса 8.

Прислать комментарий     Решение

Задача 54244

Темы:   [ Ромбы. Признаки и свойства ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 2+
Классы: 8,9

Диагонали ромба равны 24 и 70. Найдите сторону ромба.

Прислать комментарий     Решение

Задача 54245

Темы:   [ Ромбы. Признаки и свойства ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 2+
Классы: 8,9

Найдите диагонали ромба, если они относятся как  3 : 4,  а периметр равен 1.

Прислать комментарий     Решение

Задача 56474

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 2+
Классы: 9

Прямая, проходящая через вершину A квадрата ABCD, пересекает сторону CD в точке E и прямую BC в точке F. Докажите, что  1/AE2 + 1/AF2 = 1/AB2.

Прислать комментарий     Решение

Задача 108469

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 2+
Классы: 8,9

Квадрат вписан в равнобедренный прямоугольный треугольник, причём одна вершина квадрата расположена на гипотенузе, противоположная ей вершина совпадает с вершиной прямого угла треугольника, а остальные лежат на катетах. Найдите сторону квадрата, если катет треугольника равен a.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .