Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 22 задачи
Версия для печати
Убрать все задачи

На ребрах связного графа расставлены стрелки так, что для каждой вершины числа входящих и выходящих рёбер равны.
Докажите, что двигаясь по стрелкам, можно добраться от каждой вершины до любой другой.

Вниз   Решение


Выведите из теоремы 61013 то, что   – иррациональное число.

ВверхВниз   Решение


Основанием пирамиды SABC является правильный треугольник ABC , сторона которого равна . Основанием высоты, опущенной из вершины S , является точка O , лежащая внутри треугольника ABC . Расстояние от точки O до стороны AC равно 1. Синус угла OBA относится к синусу угла OBC как 2:1 . Площадь грани SAB равна . Найдите объём пирамиды.

ВверхВниз   Решение


В выпуклом четырехугольнике прямая, проходящая через середины двух противоположных сторон, образует равные углы с диагоналями четырехугольника. Докажите, что диагонали равны.

ВверхВниз   Решение


Дана выпуклая фигура и точка A внутри нее. Докажите, что найдется хорда (т.е. отрезок, соединяющий две граничные точки выпуклой фигуры), проходящая через точку A и делящаяся точкой A пополам.

ВверхВниз   Решение


Докажите, что в любом выпуклом многоугольнике, кроме параллелограмма, можно выбрать три стороны, при продолжении которых образуется треугольник, объемлющий данный многоугольник.

ВверхВниз   Решение


Автор: Яглом И.М.

В любом выпуклом многоугольнике, кроме параллелограмма, можно выбрать три стороны, при продолжении которых образуется треугольник, объемлющий данный многоугольник. Докажите это.

ВверхВниз   Решение


На плоскости дан прямой угол. Окружность с центром, расположенным вне этого угла, касается продолжения одной из его сторон, пересекает другую сторону в точках A и B и пересекает биссектрису этого угла в точках C и D.  AB = 4CD = 2.  Найдите радиус окружности.

ВверхВниз   Решение


На катете BC прямоугольного треугольника ABC как на диаметре построена окружность, пересекающая гипотенузу AB в точке K. Найдите площадь треугольника BCK, если BC = a, CA = b.

ВверхВниз   Решение


Из середины основания треугольника проведены прямые, параллельные боковым сторонам. Докажите, что площадь полученного таким образом параллелограмма равна половине площади треугольника.

ВверхВниз   Решение


Точки M и N лежат на сторонах соответственно AD и BC ромба ABCD, причём DM : AM = BN : NC = 2 : 1. Найдите MN, если известно, что сторона ромба равна a, а $ \angle$BAD = 60o.

ВверхВниз   Решение


В ромбе ABCD угол при вершине A равен 60°. Точка N делит сторону AB в отношении  AN : BN = 2 : 1.  Найдите тангенс угла DNC.

ВверхВниз   Решение


В одной из граней двугранного угла, равного ϕ , взята точка A на расстоянии a от ребра. Найдите расстояние от точки A до плоскости другой грани.

ВверхВниз   Решение


В прямоугольном треугольнике ABC$ \angle$C = 90o. На продолжении гипотенузы AB отложен отрезок BD, равный катету BC, и точка D соединена с C. Найдите CD, если BC = 7 и AC = 24.

ВверхВниз   Решение


Из точки A проведены два луча, пересекающие данную окружность: один — в точках B и C, другой — в точках D и E. Известно, что AB = 7, BC = 7, AD = 10. Найдите DE.

ВверхВниз   Решение


Через центр O вписанной окружности ω треугольника ABC проведена прямая, параллельная стороне BC и пересекающая стороны AB и AC соответственно в точках M и N.
SABC = BC = 2,  а отрезок AO в четыре раза больше радиуса ω. Найдите периметр треугольника AMN.

ВверхВниз   Решение


k вершин правильного n-угольника закрашены. Закраска называется почти равномерной, если для любого натурального m верно следующее условие: если M1 – множество m расположенных подряд вершин и M2 – другое такое множество, то количество закрашенных вершин в M1 отличается от количества закрашенных вершин в M2 не больше чем на 1. Доказать, что для любых натуральных n и  kn  почти равномерная закраска существует и что она единственна с точностью до поворотов закрашенного множества.

ВверхВниз   Решение


В треугольнике ABC проведены медианы AM и BP. Известно, что  ∠APB = ∠BMA,  cos∠ACB = 0,8,  BP = 1.  Найдите площадь треугольника ABC .

ВверхВниз   Решение


Пусть $O$ – центр описанной окружности остроугольного треугольника $ABC$, точка $M$ – середина стороны $AC$. Прямая $BO$ пересекает высоты $AA_1$ и $CC_1$ в точках $H_a$ и $H_c$ соответственно. Описанные окружности треугольников $BH_aA$ и $BH_cC$ вторично пересекаются в точке $K$. Докажите, что $K$ лежит на прямой $BM$.

ВверхВниз   Решение


В треугольнике ABC  O, M, N – центр описанной окружности, центр тяжести и точка Нагеля соответственно.
Докажите, что угол MON прямой тогда и только тогда, когда один из углов треугольника равен 60°.

ВверхВниз   Решение


Точка C лежит на стороне MN ромба KLMN, причём CN = 2CM и угол MNK равен 120o. Найдите отношение косинусов углов CKN и CLM.

ВверхВниз   Решение


Диагональ прямоугольной трапеции и её боковая сторона равны.
Найдите среднюю линию трапеции, если высота трапеции равна 2, а боковая сторона равна 4.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 688]      



Задача 54198

Темы:   [ Проекции оснований, сторон или вершин трапеции ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Найдите высоту трапеции со сторонами 10, 10, 10 и 26.

Прислать комментарий     Решение

Задача 54282

Темы:   [ Средняя линия трапеции ]
[ Теорема Пифагора (прямая и обратная) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3
Классы: 8,9

Диагональ прямоугольной трапеции и её боковая сторона равны.
Найдите среднюю линию трапеции, если высота трапеции равна 2, а боковая сторона равна 4.

Прислать комментарий     Решение

Задача 54401

Темы:   [ Трапеции (прочее) ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

В трапеции ABCD длина большего основания AD равна a, BC перпендикулярно CD, AB = BC, диагональ BD перпендикулярна AB. Найдите стороны трапеции.

Прислать комментарий     Решение


Задача 54880

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

В трапеции ABCD известны боковые стороны AB = 27 , CD = 28 , основание BC = 5 и cos BCD = - . Найдите диагональ AC .
Прислать комментарий     Решение


Задача 66409

Темы:   [ Трапеции (прочее) ]
[ Подобные треугольники (прочее) ]
[ Гомотетия и поворотная гомотетия (прочее) ]
Сложность: 3
Классы: 9,10,11

Автор: Mudgal A.

Диагонали трапеции ABCD перпендикулярны. Точка M – середина боковой стороны AB, точка N симметрична центру описанной окружности треугольника ABD относительно прямой AD. Докажите, что ∠CMN = 90°.
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 688]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .