Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 20 задач
Версия для печати
Убрать все задачи

Автор: Фомин С.В.

Два шахматиста играют между собой в шахматы с часами (сделав ход, шахматист останавливает свои часы и пускает часы другого). Известно, что после того, как оба сделали по 40 ходов, часы обоих шахматистов показывали одно и то же время: 2 часа 30 мин.

  а) Докажите, что в ходе партии был момент, когда часы одного обгоняли часы другого не менее, чем на 1 мин. 51 сек.
  б) Можно ли утверждать, что в некоторый момент разница показаний часов была равна 2 мин.?

Вниз   Решение


В треугольнике ABC проведён серединный перпендикуляр к стороне AB до пересечения с другой стороной в некоторой точке C'. Аналогично построены точки A' и B'. Для каких исходных треугольников треугольник A'B'C' будет равносторонним?

ВверхВниз   Решение


В городе Плоском нет ни одной башни. Для развития туризма жители города собираются построить несколько башен общей высотой в 30 этажей. Инспектор Высотников, поднимаясь на каждую башню, считает число более низких башен, а потом складывает получившиеся величины. После чего инспектор рекомендует город тем сильнее, чем получившаяся величина больше. Сколько и какой высоты башен надо построить жителям, чтобы получить наилучшую возможную рекомендацию?

ВверхВниз   Решение


На знакомом нам заводе вырезают металлические диски диаметром 1 м. Известно, что диск диаметром ровно 1 м весит ровно 100 кг. При изготовлении возникает ошибка измерения, и поэтому стандартное отклонение радиуса составляет 10 мм. Инженер Сидоров считает, что стопка из 100 дисков в среднем будет весить 10000 кг. На сколько ошибается инженер Сидоров?

ВверхВниз   Решение


Какое число больше: 3111 или 1714?

ВверхВниз   Решение


В треугольнике ABC проведены биссектрисы AA', BB', CC'. Известно, что в треугольнике A'B'C' эти прямые также являются биссектрисами.
Верно ли, что треугольник ABC равносторонний?

ВверхВниз   Решение


Сколько цифр у числа 21000?

ВверхВниз   Решение


Точки M и N – середины соседних сторон соответственно BC и CD параллелограмма ABCD. Докажите, что прямые DM и BN пересекаются на диагонали AC.

ВверхВниз   Решение


Продолжение биссектрисы AD треугольника ABC пересекает описанную окружность в точке M. Пусть Q - центр окружности, вписанной в треугольник ABC. Докажите, что треугольники MBQ и MCQ - равнобедренные.

ВверхВниз   Решение


В круге радиуса 1 проведены хорды AB = $ \sqrt{2}$ и BC = $ {\frac{10}{7}}$. Найдите площадь части круга, лежащей внутри угла ABC, если угол BAC острый.

ВверхВниз   Решение


В треугольнике $ABC$ провели высоты $AX$ и $BZ$, а также биссектрисы $AY$ и $BT$. Известно, что углы $XAY$ и $ZBT$ равны. Обязательно ли треугольник $ABC$ равнобедренный?

ВверхВниз   Решение


Докажите, что многочлен  x12x9 + x4x + 1  при всех значениях x положителен.

ВверхВниз   Решение


Одна вершина правильного треугольника лежит на окружности, а две другие делят некоторую хорду на три равные части.
Под каким углом видна хорда из центра окружности?

ВверхВниз   Решение


Автор: Анджанс А.

Будем говорить, что две пирамиды соприкасаются гранями, если эти пирамиды не имеют общих внутренних точек и некоторая грань одной пирамиды пересекается с некоторой гранью другой пирамиды по многоугольнику. Можно ли расположить восемь пирамид в пространстве так, чтобы каждые две соприкасались гранями?

ВверхВниз   Решение


Что больше:  1234567/7654321  или  1234568/7654322?

ВверхВниз   Решение


По окружности выписано 10 чисел, сумма которых равна 100. Известно, что сумма каждых трёх чисел, стоящих рядом, не меньше 29.
Укажите такое наименьшее число А, что в любом таком наборе чисел каждое из чисел не превосходит А.

ВверхВниз   Решение


В треугольник ABC вписана окружность с центром O. На стороне AB выбрана точка P, а на продолжении стороны AC за точку C – точка Q так, что отрезок PQ касается окружности. Докажите, что  ∠BOP = ∠COQ.

ВверхВниз   Решение


Четыре кузнечика сидели в вершинах квадрата. Каждую секунду один из кузнечиков прыгает через другого в симметричную точку (если A прыгает через B в точку A1, то векторы     и     равны). Докажите, что три кузнечика не могут оказаться
  а) на одной прямой, параллельной стороне квадрата;
  б) на одной произвольной прямой.

 

ВверхВниз   Решение


На плоскости даны две параболы:  $y = x^2$  и  $y = x^2 - 1$.  Пусть $U$ – множество всех точек плоскости, лежащих между параболами (включая точки на самих параболах). Существует ли отрезок длины более $10^6$, целиком содержащийся в $U$?

ВверхВниз   Решение


В прямоугольном треугольнике ABC гипотенуза AB равна c и  ∠B = α.  Найдите все медианы этого треугольника.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 542]      



Задача 54416

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 3
Классы: 8,9

В треугольнике ABC сторона AB равна 6. Основание D высоты CD лежит на стороне AB , причём AD=BC=4 . Найдите высоту AE .
Прислать комментарий     Решение


Задача 54419

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Круг, сектор, сегмент и проч. ]
Сложность: 3
Классы: 8,9

В круговом секторе OAB , центральный угол которого равен 45o , расположен прямоугольник KMPT . Сторона KM прямоугольника лежит на радиусе OA , вершина P — на дуге AB , вершина T — на радиусе OB . Сторона KT на 3 больше стороны KM . Площадь прямоугольника KMPT равна 18. Найдите радиус.
Прислать комментарий     Решение


Задача 54447

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Длины сторон, высот, медиан и биссектрис ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике ABC гипотенуза AB равна c и  ∠B = α.  Найдите все медианы этого треугольника.

Прислать комментарий     Решение

Задача 54679

Тема:   [ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

AA1, BB1 и CC1 – высоты треугольника ABC. Докажите, что

Прислать комментарий     Решение

Задача 60658

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Уравнения в целых числах ]
[ Целочисленные треугольники ]
Сложность: 3
Классы: 8,9,10

Сколько имеется прямоугольных треугольников, длины сторон которых выражены целыми числами, если один из катетов этих треугольников равен 15?

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 542]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .