ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Существует ли непостоянный многочлен $P(x)$, который можно представить в виде суммы $a(x) + b(x)$, где $a(x)$ и $b(x)$ – квадраты многочленов с действительными коэффициентами,
С помощью циркуля и линейки постройте треугольник по углу, противолежащей стороне и разности двух других сторон.
В выпуклом 2002-угольнике провели несколько диагоналей, не пересекающихся внутри 2002-угольника. В результате 2002-угольник разделился на 2000 треугольников. Могло ли случиться, что ровно у половины этих треугольников все стороны являются диагоналями этого 2002-угольника?
Постройте треугольник ABC по углам A и B и разности сторон AC и BC.
Пять отрезков таковы, что из любых трех из них
можно составить треугольник. Докажите, что хотя бы один из этих
треугольников остроугольный.
Все коэффициенты многочлена равны 1, 0 или –1. Докажите, что середины всех хорд данной длины, проведённых в данной окружности, лежат на некоторой окружности. Докажите, что треугольник ABC остроугольный тогда и
только тогда, когда длины его проекций на три различных направления
равны.
Докажите, что радикальная ось двух пересекающихся
окружностей проходит через точки их пересечения.
Постройте треугольник АВС по углу А и медианам, проведенным из вершин В и С. Прямоугольный треугольник ABC движется по плоскости так, что его вершины B и C скользят по сторонам данного прямого угла. Доказать, что множеством точек A является отрезок и найти его длину.
С помощью циркуля и линейки постройте треугольник по стороне, притиволежащему углу и медиане, проведённой из вершины одного из прилежащих углов.
С помощью циркуля и линейки постройте треугольник по стороне, противолежащему углу и радиусу вписанной окружности.
Многочлен p и число a таковы, что для любого числа x верно равенство p(x) = p(a – x). Стороны AB и CD выпуклого четырёхугольника ABCD площади S не параллельны. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 85]
Стороны AB и CD выпуклого четырёхугольника ABCD площади S не параллельны.
Найдите геометрическое место точек M, лежащих внутри ромба ABCD и обладающих тем свойством, что ∠AMD + ∠BMC = 180°.
Точка O лежит на отрезке AC. Найдите геометрическое место точек M, для которых ∠MOC = 2∠MAC.
Найдите геометрическое место точек, расположенных внутри данного угла, сумма расстояний от которых до сторон этого угла равна данной величине a.
На плоскости даны точки A и B и прямая l. По какой траектории движется точка пересечения медиан треугольников ABC, если точка C движется по прямой l?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 85]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке