Processing math: 66%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Через концы диаметра окружности проведены две хорды, пересекающиеся на окружности и равные 12 и 16. Найдите расстояния от центра окружности до этих хорд.

Вниз   Решение


Автор: Шатунов Л.

Дан выпуклый четырехугольник ABCD. Прямая lAC пересекает прямые AD,BC,AB,CD в точках X,Y,Z,T. Описанные окружности треугольников XYB и ZTB вторично пересекаются в точке R. Докажите, что R лежит на прямой BD.

ВверхВниз   Решение


Дан острый угол с вершиной A и точка E внутри него. Построить на сторонах угла точки B, C так, чтобы E была центром окружности Эйлера треугольника ABC.

ВверхВниз   Решение


Угол при основании равнобедренного треугольника равен $ \varphi$. Найдите отношение радиуса вписанной в данный треугольник окружности к радиусу описанной окружности.

ВверхВниз   Решение


Пусть h — наибольшая высота нетупоугольного треугольника. Докажите, что r + R $ \leq$ h.

ВверхВниз   Решение


Сторона AD параллелограмма ABCD разделена на n равных частей. Первая точка деления P соединена с вершиной B.
Доказать, что прямая BP отсекает на диагонали AC часть AQ, которая равна 1/n+1 части диагонали:  AQ = AC/n+1.

ВверхВниз   Решение


Во вписанном четырёхугольнике ABCD известны углы:  ∠DAB = α,  ∠ABC = β,  ∠BKC = γ,  где K – точка пересечения диагоналей. Найдите угол ACD.

ВверхВниз   Решение


Многочлен  P(x,y)  таков, что для всякого целого  n  каждый из многочленов  P(n, y)  и  P(x, n)  либо тождественно равен нулю, либо имеет степень не выше n.
Может ли многочлен  P(x, x) иметь нечётную степень?

ВверхВниз   Решение


Из вершины B произвольного треугольника ABC проведены вне треугольника прямые BM и BN, так что  ∠ABM = ∠CBN.  Точки A' и C' симметричны точкам A и C относительно прямых BM и BN (соответственно). Доказать, что  AC' = A'C.

ВверхВниз   Решение


Найдите геометрическое место точек M, лежащих внутри ромба ABCD и обладающих тем свойством, что  ∠AMD + ∠BMC = 180°.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 85]      



Задача 54571

Темы:   [ ГМТ - прямая или отрезок ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9

Стороны AB и CD выпуклого четырёхугольника ABCD площади S не параллельны.
Найдите геометрическое место точек X, лежащих внутри четырёхугольника, для которых  SABX + SCDX = S/2.

Прислать комментарий     Решение

Задача 54582

Темы:   [ ГМТ - прямая или отрезок ]
[ Ромбы. Признаки и свойства ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 3+
Классы: 8,9

Найдите геометрическое место точек M, лежащих внутри ромба ABCD и обладающих тем свойством, что  ∠AMD + ∠BMC = 180°.

Прислать комментарий     Решение

Задача 54634

Темы:   [ ГМТ - прямая или отрезок ]
[ ГМТ - окружность или дуга окружности ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

Точка O лежит на отрезке AC. Найдите геометрическое место точек M, для которых  ∠MOC = 2∠MAC.

Прислать комментарий     Решение

Задача 55700

Темы:   [ ГМТ - прямая или отрезок ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9

Найдите геометрическое место точек, расположенных внутри данного угла, сумма расстояний от которых до сторон этого угла равна данной величине a.

Прислать комментарий     Решение

Задача 55766

Темы:   [ ГМТ - прямая или отрезок ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

На плоскости даны точки A и B и прямая l. По какой траектории движется точка пересечения медиан треугольников ABC, если точка C движется по прямой l?

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 85]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .