ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Среди всех таких чисел n, что любой выпуклый
100-угольник можно представить в виде пересечения (т. е.
общей части) n треугольников, найдите наименьшее.
На плоскости расположено 20 точек, никакие три из которых не лежат на одной
прямой, из них 10 синих и 10 красных.
Постройте треугольник по стороне, противолежащему углу и сумме двух других сторон.
Назовём натуральное число хорошим, если в его десятичной записи встречаются подряд цифры 1, 9, Постарайтесь найти возможно меньшее Около окружности радиуса R описана равнобедренная трапеция ABCD. E и K – точки касания этой окружности с боковыми сторонами трапеции. Угол между основанием AB и боковой стороной AD трапеции равен 60°. Докажите, что EK || AB и найдите площадь трапеции ABKE. В прямоугольном треугольнике ABC с равными катетами AC и BC на
стороне AC как на диаметре построена окружность, пересекающая
сторону AB в точке M. Найдите расстояние от вершины B до центра
этой окружности, если
BM =
Пусть c — наибольшая сторона треугольника со сторонами a, b, c. Докажите, что если a2 + b2 > c2, то треугольник остроугольный, а если a2 + b2 < c2, — тупоугольный.
Решите уравнение 2 sin πx/2 – 2 cos πx = x5 + 10x – 54. Равнобедренные треугольники ABC (AB = BC) и A1B1C1 (A1B1 = B1C1) подобны и AB : A1B1 = 2 : 1. Вершины A1, B1 и C1 расположены соответственно на сторонах CA, AB и BC, причём A1B1 ⊥ AC. Найдите угол B. В равнобедренной трапеции ABCD основания AD = 12, BC = 6, высота равна 4. Диагональ AC делит угол BAD трапеции на две части. Какая из них больше? В окружность вписан 101-угольник. Из каждой его вершины опустили перпендикуляр на прямую, содержащую противоположную сторону. Диагонали выпуклого четырёхугольника ABCD пересекаются в точке L. В треугольнике ABL отметили точку пересечения высот H, а в треугольниках BCL, CDL и DAL – центры O1, O2 и O3 описанных окружностей. Затем весь рисунок, кроме точек H, O1, O2, O3, стерли. Восстановите его.
Одна из сторон треугольника вдвое больше другой, а угол между этими сторонами равен 60o. Докажите, что треугольник — прямоугольный.
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 449]
Найдите периметр четырехугольника ABCD, в котором
AB = CD = a,
Одна из сторон треугольника вдвое больше другой, а угол между этими сторонами равен 60o. Докажите, что треугольник — прямоугольный.
Сторона треугольника равна 2
Одна из сторон треугольника равна 6, вторая сторона равна 2
Пусть c — наибольшая сторона треугольника со сторонами a, b, c. Докажите, что если a2 + b2 > c2, то треугольник остроугольный, а если a2 + b2 < c2, — тупоугольный.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 449]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке