ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Про многочлен f(x) = x10 + a9x9 + ... + a0 известно, что f(1) = f(–1), ..., f(5) = f(–5). Докажите, что f(x) = f(– x) для любого действительного x. Докажите, что если в выпуклом пятиугольнике ABCDE ABC = ∠ADE и ∠AEC = ∠ADB, то ∠BAC = ∠DAE. Известно, что разность между наибольшим и наименьшим из чисел x1, x2, x3, ..., x9, x10 равна 1. Какой а) наибольшей; б) наименьшей может быть разность между наибольшим и наименьшим из 10 чисел x1, ½ (x1 + x2), ⅓ (x1 + x2 + x3), ..., 1/10 (x1 + x2 + ... + x10)? Один путник шел первые полпути со скоростью 4 км/ч, а вторые полпути со скоростью 6 км/ч. Другой путник шел первую половину времени со скоростью со скоростью 4км/ч, а вторую половину времени со скоростью 6 км/ч. С какой постоянной скоростью должен был бы идти каждый из них, чтобы затратить на свое путешествие то же самое время?
В треугольнике ABC точка D лежит на стороне BC, а точка O — на
отрезке AD. Известно, что точки C, D и O лежат на окружности, центр
которой находится на стороне AC,
AC = 2
Сумма обратных величин трёх натуральных чисел равна 1. Каковы эти числа? Треугольник ABC вписан в окружность. Через точку A проведены хорды, пересекающие сторону BC в точках K и L и дугу BC в точках M и N.
В равнобедренную трапецию, периметр которой равен 8, а площадь 2, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего основания.
Прямоугольник размером
m×n замощен плитками,
изображенными на рис. Докажите, что m и n делятся на
4.
Около треугольника APK описана окружность радиуса 1.
Продолжение стороны AP за вершину P отсекает от касательной к
окружности, проведённой через вершину K, отрезок BK, равный 7.
Найдите площадь треугольника APK, если известно, что угол ABK
равен
arctg
Докажите, что многочлен x44 + x33 + x22 + x11 + 1 делится на x4 + x3 + x2 + x + 1. Во время стоянки между двумя рейсами матросу исполнилось 20 лет. По этому случаю в кают-компании собрались все шесть членов команды. Докажите, что три неравенства Две окружности пересекаются в точках A и B; AM и AN – диаметры окружностей. Докажите, что точки M, N и B лежат на одной прямой. Через данную точку на плоскости проводятся всевозможные прямые, пересекающие данную окружность. Найти геометрическое место середин получившихся хорд.
O – центр окружности, C – точка пересечения хорды AB и радиуса OD, перпендикулярного к ней, OC = 9, CD = 32. Найдите длину хорды. Дана равнобокая трапеция ABCD с основаниями BC и AD. Окружность ω проходит через вершины B и C и вторично пересекает сторону AB и диагональ BD в точках X и Y соответственно. Касательная, проведённая к окружности ω в точке C, пересекает луч AD в точке Z. Докажите, что точки X, Y и Z лежат на одной прямой.
В трапеции ABCD боковая сторона AD перпендикулярна основаниям и равна 9, CD = 12, а отрезок AO, где O — точка пересечения диагоналей трапеции, равен 6. Найдите площадь треугольника BOC.
|
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 542]
Окружность, вписанная в прямоугольный треугольник с катетами 6 и 8, касается гипотенузы в точке M. Найдите расстояние от точки M до вершины прямого угла.
В трапеции ABCD боковая сторона AD перпендикулярна основаниям и равна 9, CD = 12, а отрезок AO, где O — точка пересечения диагоналей трапеции, равен 6. Найдите площадь треугольника BOC.
Площадь прямоугольного треугольника ABC (
Дан шестиугольник ABCDEF, в котором AB = BC, CD = DE, EF = FA, а углы A и C — прямые. Докажите, что прямые FD и BE перпендикулярны.
Внутри прямоугольного треугольника ABC (угол B — прямой) взята точка D, причём площади треугольников ABD и BCD соответственно в три и в четыре раза меньше площади треугольника ABC. отрезки AD и DC равны соответственно a и c. Найдите BD.
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 542]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке