Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Сформулируйте и докажите признаки делимости на 2n и 5n.

Вниз   Решение


В треугольнике ABC даны углы B и C. Биссектриса угла A пересекает сторону BC в точке D, а описанную окружность треугольника ABC – в точке E.
Найдите отношение AE : DE.

ВверхВниз   Решение


Можно ли невыпуклый четырехугольник разрезать двумя прямыми на 6 частей?

ВверхВниз   Решение


Натуральный ряд представлен в виде объединения некоторого множества попарно непересекающихся целочисленных бесконечных арифметических прогрессий с положительными разностями  d1, d2, d3, ... .  Может ли случиться, что при этом сумма   1/d1 + 1/d2 + ... + 1/dk   не превышает 0,9? Рассмотрите случаи:
  а) общее число прогрессий конечно;
  б) прогрессий бесконечное число (в этом случае условие нужно понимать в том смысле, что сумма любого конечного числа слагаемых из бесконечной суммы не превышает 0,9).

ВверхВниз   Решение


Середина одной из диагоналей выпуклого четырёхугольника соединена с концами другой диагонали. Докажите, что полученная ломаная делит четырёхугольник на две равновеликие части.

ВверхВниз   Решение


Известно, что  cos α° = 1/3.  Является ли α рациональным числом?

ВверхВниз   Решение


В некоторой стране 100 аэродромов, причём все попарные расстояния между ними различны. С каждого аэродрома поднимается самолет и летит на ближайший к нему аэродром.
Докажите, что ни на один аэродром не может прилететь больше пяти самолетов.

ВверхВниз   Решение


а) Назовите 10 первых натуральных чисел, имеющих нечётное число делителей (в число делителей включается единица и само число).

б) Попробуйте сформулировать и доказать правило, позволяющее найти следующие такие числа.

ВверхВниз   Решение


Какое наименьшее количество различных целых чисел нужно взять, чтобы среди них можно было выбрать как геометрическую, так и арифметическую прогрессию длины 5?

ВверхВниз   Решение


Можно ли расположить на плоскости 1000 отрезков так, чтобы каждый отрезок обоими своими концами упирался строго внутрь других отрезков?

ВверхВниз   Решение


Озеро имеет форму невыпуклого n-угольника. Докажите, что множество точек озера, из которых видны все его берега, либо пусто, либо заполняет внутренность выпуклого m-угольника, где mn.

ВверхВниз   Решение


Найти все положительные решения системы уравнений
   

ВверхВниз   Решение


Докажите, что отношение площадей подобных треугольников равно квадрату их коэффициента подобия.

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 462]      



Задача 116290

Тема:   [ Отношение площадей треугольников с общим углом ]
Сложность: 3
Классы: 8,9

На сторонах AB и AC треугольника ABC , площадь которого равна 50, взяты соответственно точки M и K так, что AM:MB = 1:5 , а AK:KC = 3:2 . Найдите площадь треугольника AMK .
Прислать комментарий     Решение


Задача 54952

Темы:   [ Отношение площадей подобных треугольников ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3
Классы: 8,9

Докажите, что отношение площадей подобных треугольников равно квадрату их коэффициента подобия.

Прислать комментарий     Решение


Задача 55101

Тема:   [ Медиана делит площадь пополам ]
Сложность: 3
Классы: 8,9

Докажите, что если диагональ какого-нибудь четырёхугольника делит другую диагональ пополам, то она делит пополам и площадь четырёхугольника.

Прислать комментарий     Решение


Задача 55106

Темы:   [ Медиана делит площадь пополам ]
[ Площадь четырехугольника ]
Сложность: 3
Классы: 8,9

Середина одной из диагоналей выпуклого четырёхугольника соединена с концами другой диагонали. Докажите, что полученная ломаная делит четырёхугольник на две равновеликие части.

Прислать комментарий     Решение


Задача 55143

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Построения с помощью вычислений ]
Сложность: 3
Классы: 8,9

Как в треугольнике ABC провести ломаную BDEFG (см. рисунок), чтобы все пять полученных треугольников имели одинаковые площади?

Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 462]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .