ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике ABC угол A равен 45o, а угол C — острый. Из середины стороны BC опущен перпендикуляр NM на сторону AC. Площади треугольников NMC и ABC относятся, как 1:8. Найдите углы треугольника ABC.

   Решение

Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 330]      



Задача 55009

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC угол A равен 45o, а угол C — острый. Из середины стороны BC опущен перпендикуляр NM на сторону AC. Площади треугольников NMC и ABC относятся, как 1:8. Найдите углы треугольника ABC.

Прислать комментарий     Решение


Задача 66656

Темы:   [ Ортоцентр и ортотреугольник ]
[ Средняя линия треугольника ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вспомогательные подобные треугольники ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 3+
Классы: 9,10,11

Автор: Хилько Д.

В остроугольном треугольнике $ABC$ проведены высоты $AH_1, BH_2, CH_3$, которые пересекаются в ортоцентре $H$. Точки $P$ и $Q$ симметричны $H_2$ и $H_3$ относительно $H$. Описанная окружность треугольника $PH_1Q$ пересекает во второй раз высоты $BH_2$ и $CH_3$ в точках $R$ и $S$. Докажите, что $RS$ – средняя линия треугольника $ABC$.
Прислать комментарий     Решение


Задача 55338

Темы:   [ Теорема синусов ]
[ Средняя линия треугольника ]
Сложность: 4-
Классы: 8,9

В прямоугольном треугольнике ABC с прямым углом C, углом B, равным 30o, и катетом CA = 1, проведена медиана CD. Кроме того, из точки D под углом 15o к гипотенузе проведена прямая, пересекающая отрезок BC в точке F. Найдите площадь треугольника CDF. Укажите её приближённое значение в виде десятичной дроби с точностью до 0,01.

Прислать комментарий     Решение


Задача 32109

Темы:   [ Построение треугольников по различным точкам ]
[ Средняя линия треугольника ]
[ Векторы помогают решить задачу ]
[ Пятиугольники ]
Сложность: 4-
Классы: 8,9,10

Восстановите  а) треугольник;  б) пятиугольник по серединам его сторон.

Прислать комментарий     Решение

Задача 54845

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Средняя линия треугольника ]
Сложность: 4-
Классы: 8,9

На боковой стороне AB трапеции ABCD взята такая точка M, что AM : BM = 2 : 3. На противоположной стороне CD взята такая точка N, что отрезок MN делит трапецию на части, одна из которых по площади втрое больше другой. Найдите отношение CN : DN, если BC : AD = 1 : 2.

Прислать комментарий     Решение


Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 330]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .