ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Доказать, что уравнение 4k – 4l = 10n не имеет решений в целых числах.
Сформулируйте теорему, обратную теореме Пифагора. Верна ли она?
В равнобедренном треугольнике ABC длина основания AC равна
2
Решить в целых числах уравнение xy = x + y. Аня, Боря и Вася решили пойти на "Ёлку". Они договорились встретиться на автобусной остановке, но не знают, кто во сколько придёт. Каждый из них может прийти в случайный момент времени с 15.00 до 16.00. Вася самый терпеливый из всех: если он придёт и на остановке не будет ни Ани, ни Бори, то он будет ждать кого-нибудь из них 15 минут, и если никого не дождётся, пойдёт на "Ёлку" один. Боря менее терпеливый: он будет ждать лишь 10 минут. Аня самая нетерпеливая: она вообще не будет ждать. Однако если Боря и Вася встретятся, то они будут ждать Аню до 16.00. Какова вероятность того, что на "Ёлку" они пойдут все вместе? В странах Диллии и Даллии денежными единицами являются диллеры и даллеры соответственно, причем в Диллии диллер меняется на 10 даллеров, а в Даллии даллер меняется на 10 диллеров. Начинающий финансист имеет 1 диллер и может свободно перезжать из одной страны в другую и менять свои деньги в обеих странах. Докажите, что количество даллеров у него никогда не сравняется с количеством диллеров.
На продолжениях сторон треугольника ABC взяты точки A1, B1
и C1 так, что
Круг разделён на шесть секторов, в каждом из которых стоит фишка. Разрешается за один ход сдвинуть любые две фишки в соседние с ними сектора. Дана шахматная доска. Разрешается перекрашивать другой цвет сразу все клетки, расположенные внутри любого квадрата 2×2. Даны шесть чисел: 1, 2, 3, 4, 5, 6. Разрешается к любым двум из них прибавлять по 1. На доске выписаны числа 1, 2, ..., 20. Разрешается стереть любые два числа a и b и заменить их на число ab + a + b. Существуют ли четыре подряд идущих натуральных числа, каждое из которых является степенью (большей 1) другого натурального числа? В выпуклом четырёхугольнике ABCD отмечены середины противоположных сторон BC и AD– точки M и N. Диагональ AC проходит через середину отрезка MN. Найдите площадь АВСD, если площадь треугольника АВС равна S. Найти все целые натуральные решения уравнения (n + 2)! – (n + 1)! – n! = n2 + n4. Через точку K , данную на стороне AB треугольника ABC , проведите прямую так, чтобы она разделила площадь треугольника пополам. |
Страница: << 1 2 3 4 5 6 7 [Всего задач: 34]
Известно, что для вписанного в окружность четырёхугольника ABCD выполнено равенство AB : BC = AD : DC. Прямая, проходящая через вершину B и середину диагонали AC, пересекает окружность в точке M, отличной от B. Докажите, что AM = CD.
Через точку K , данную на стороне AB треугольника ABC , проведите прямую так, чтобы она разделила площадь треугольника пополам.
Фокусник отгадывает площадь выпуклого 2008-угольника A1A2... A2008, находящегося за ширмой. Он называет две точки на периметре многоугольника; зрители отмечают эти точки, проводят через них прямую и сообщают фокуснику меньшую из двух площадей частей, на которые 2008-угольник разбивается этой прямой. При этом в качестве точки фокусник может назвать либо вершину, либо точку, делящую указанную им сторону в указанном им численном отношении. Докажите, что за 2006 вопросов фокусник сможет отгадать площадь многоугольника.
В трапеции ABCD (AD || BC) из точки Е – середины CD провели перпендикуляр EF к прямой AB. Найдите площадь трапеции, если АВ = 5, EF = 4.
Страница: << 1 2 3 4 5 6 7 [Всего задач: 34]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке