|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Существуют ли такие три квадратных трёхчлена, что каждый из них имеет два различных действительных корня, а сумма любых двух из них действительных корней не имеет? На продолжении наибольшей стороны AC треугольника ABC отложен отрезок |CD|=|BC| . Доказать, что Из вершины тупого угла A треугольника ABC опущена высота AD. Из точки D радиусом, равным AD, описана окружность, пересекающая стороны треугольника AB и AC в точках M и N соответственно. Найдите сторону AC, если известно, что AB = c, AM = m и AN = n.
В треугольнике ABC известно, что
|
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 122]
Пусть BD — биссектриса треугольника ABC. Докажите, что AB > AD и CB > CD.
У треугольника ABC угол C — тупой. Докажите, что если точка X лежит на стороне AC, а точка Y — на стороне BC, то XY < AB.
В треугольнике ABC известно, что
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 122] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|