ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пятиугольник ABCDE вписан в окружность. Расстояния от точки A до прямых BC, CD и DE равны соответственно a, b и c. Существует ли такой выпуклый пятиугольник, от которого некоторая прямая отрезает подобный ему пятиугольник?
На высоте AH треугольника ABC взята точка M. Докажите, что AB2 - AC2 = MB2 - MC2.
Все точки окружности окрашены произвольным образом в два цвета.
Середины сторон выпуклого пятиугольника последовательно соединены отрезками. Найдите периметр полученного пятиугольника, если сумма всех диагоналей данного равна a.
Вокруг окружности описан пятиугольник, длины сторон которого – целые числа, а первая и третья стороны равны 1. Можно ли вместо звёздочек вставить в выражение НОК(*, *, *) – НОК(*, *, *) = 2009 в некотором порядке шесть последовательных натуральных чисел так, чтобы равенство стало верным?
Площадь треугольника ABC равна S,
|
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 1331]
В треугольнике ABC известно, что AC = 13, AB = 14, BC = 15. На стороне BC взята точка M, причём CM : MB = 1 : 2. Найдите AM.
Площадь треугольника ABC равна S,
Площадь треугольника ABC равна S,
Стороны треугольника относятся как 5 : 4 : 3. Найдите отношения отрезков сторон, на которые они делятся точками касания с вписанной окружностью.
Окружность, вписанная в треугольник, точкой касания делит одну из сторон на отрезки, равные 3 и 4, а противолежащий этой стороне угол равен 120o . Найдите площадь треугольника.
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 1331]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке