Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Докажите, что если прямая Эйлера проходит через центр вписанной окружности треугольника, то треугольник равнобедренный.

Вниз   Решение


Имеется пирог некоторой формы. Докажите, что его можно разрезать на четыре равные по массе части двумя прямолинейными перпендикулярными разрезами.

ВверхВниз   Решение


Автор: Тебо В.

Пусть A1, B1 и C1 — основания высот AA1, BB1 и CC1 треугольника ABC. Докажите, что прямые Эйлера треугольников AB1C1, BA1C1 и CA1B1 пересекаются на окружности девяти точек треугольника ABC.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 70]      



Задача 56964

Тема:   [ Прямая Эйлера и окружность девяти точек ]
Сложность: 5+
Классы: 9

Докажите, что если прямая Эйлера проходит через центр вписанной окружности треугольника, то треугольник равнобедренный.
Прислать комментарий     Решение


Задача 108195

Темы:   [ Прямая Эйлера и окружность девяти точек ]
[ Средняя линия треугольника ]
[ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 6-
Классы: 8,9,10,11

Точки A2 , B2 и C2 – середины высот AA1 , BB1 и CC1 остроугольного треугольника ABC . Найдите сумму углов B2A1C2 , C2B1A2 и A2C1B2 .
Прислать комментарий     Решение


Задача 56965

Тема:   [ Прямая Эйлера и окружность девяти точек ]
Сложность: 6
Классы: 9

Вписанная окружность касается сторон треугольника ABC в точках A1, B1 и C1. Докажите, что прямая Эйлера треугольника A1B1C1 проходит через центр описанной окружности треугольника ABC.
Прислать комментарий     Решение


Задача 55659

Темы:   [ Прямая Эйлера и окружность девяти точек ]
[ Поворот помогает решить задачу ]
Сложность: 6+
Классы: 8,9

Автор: Тебо В.

Пусть A1, B1 и C1 — основания высот AA1, BB1 и CC1 треугольника ABC. Докажите, что прямые Эйлера треугольников AB1C1, BA1C1 и CA1B1 пересекаются на окружности девяти точек треугольника ABC.

Прислать комментарий     Решение


Задача 56966

Тема:   [ Прямая Эйлера и окружность девяти точек ]
Сложность: 7
Классы: 9

В треугольнике ABC проведены высоты AA1, BB1 и CC1. Пусть  A1A2, B1B2 и C1C2 — диаметры окружности девяти точек треугольника ABC. Докажите, что прямые AA2, BB2 и CC2 пересекаются в одной точке (или параллельны).
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 70]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .