Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 21 задача
Версия для печати
Убрать все задачи

Выразите площадь треугольника ABC через длину стороны BC и величины углов B и C.

Вниз   Решение


Биссектриса треугольника делит одну из его сторон на отрезки 3 см и 5 см. В каких границах изменяется периметр треугольника?

ВверхВниз   Решение


Равные хорды окружности с центром O пересекаются в точке M. Докажите, что MO – биссектриса угла между ними.

ВверхВниз   Решение


Автор: Мухин Д.Г.

Окружность касается боковых сторон трапеции $ABCD$ в точках $B$ и $C$, а её центр лежит на $AD$. Докажите, что диаметр окружности меньше средней линии трапеции.

ВверхВниз   Решение


Даны две пересекающиеся окружности радиуса R, причем расстояние между их центрами больше R. Докажите, что  β = 3α (рис.).


ВверхВниз   Решение


Найдите геометрическое место точек, разность расстояний от которых до двух данных непараллельных прямых имеет данную величину.

ВверхВниз   Решение


В равнобедренном треугольнике АВС угол В равен 30°,  АВ = ВС = 6.  Проведены высота CD треугольника АВС и высота DE треугольника BDC.
Найдите ВЕ.

ВверхВниз   Решение


Известно, что уравнение  ax5 + bx4 + c = 0  имеет три различных корня. Докажите, что уравнение  cx5 + bx + a = 0  также имеет три различных корня.

ВверхВниз   Решение


Окружность, построенная на биссектрисе AD треугольника ABC как на диаметре, пересекает стороны AB и AC соответственно в точках M и N, отличных от A. Докажите, что  AM = AN.

ВверхВниз   Решение


В прямоугольном треугольнике ABC биссектриса прямого угла B пересекает гипотенузу AC в точке M.
Найдите расстояние от точки M до катета BC, если катет AB равен 5, а катет BC равен 8.

ВверхВниз   Решение


Дана линейка постоянной ширины (т.е. с параллельными краями) и без делений. Постройте биссектрису данного угла.

ВверхВниз   Решение


В равнобедренном треугольнике центр вписанной окружности делит высоту в отношении  17 : 15.  Основание равно 60. Найдите радиус этой окружности.

ВверхВниз   Решение


Дан прямоугольный треугольник ABC с прямым углом при вершине C. ∠A = α,  биссектриса угла B пересекает катет AC в точке K. На стороне BC как на диаметре построена окружность, которая пересекает гипотенузу AB в точке M. Найдите угол AMK.

ВверхВниз   Решение


К плоскости приклеены два непересекающихся деревянных круга одинакового размера – серый и чёрный. Дан деревянный треугольник, одна сторона которого серая, а другая – чёрная. Его передвигают так, чтобы круги были снаружи треугольника, причём серая сторона касалась серого круга, а чёрная – чёрного (касание происходит не в вершинах). Докажите, что прямая, содержащая биссектрису угла между серой и чёрной сторонами, всегда проходит через одну и ту же точку плоскости.

ВверхВниз   Решение


Докажите, что средняя линия трапеции параллельна основаниям и равна их полусумме.

ВверхВниз   Решение


На продолжении медианы AM треугольника ABC за точку M отложен отрезок MD, равный AM. Докажите, что четырёхугольник ABDC — параллелограмм.

ВверхВниз   Решение


Найдите внутри треугольника ABC все такие точки P, чтобы общие хорды каждой пары окружностей, построенных на отрезках PA, PB и PC как на диаметрах, были равны.

ВверхВниз   Решение


Основания трапеции равны a и b  (a > b).  Найдите длину отрезка, соединяющего середины диагоналей трапеции.

ВверхВниз   Решение


Дана линейка с параллельными краями и без делений. Постройте биссектрису угла, вершина которого недоступна (лежит вне чертежа).

ВверхВниз   Решение


Докажите, что биссектриса треугольника делит его сторону на отрезки, пропорциональные двум другим сторонам.

ВверхВниз   Решение


Найдите геометрическое место точек, расположенных внутри данного угла, разность расстояний от которых до сторон этого угла имеет данную величину.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 66]      



Задача 55580

Темы:   [ Построения с помощью двусторонней линейки ]
[ Биссектриса угла (ГМТ) ]
Сложность: 3+
Классы: 8,9

Дана линейка постоянной ширины (т.е. с параллельными краями) и без делений. Постройте биссектрису данного угла.

Прислать комментарий     Решение


Задача 55582

Темы:   [ Необычные построения (прочее) ]
[ Биссектриса угла (ГМТ) ]
Сложность: 3+
Классы: 8,9

Дана линейка с параллельными краями и без делений. Постройте биссектрису угла, вершина которого недоступна (лежит вне чертежа).

Прислать комментарий     Решение


Задача 55701

Темы:   [ Параллельный перенос (прочее) ]
[ Биссектриса угла (ГМТ) ]
Сложность: 3+
Классы: 8,9

Найдите геометрическое место точек, расположенных внутри данного угла, разность расстояний от которых до сторон этого угла имеет данную величину.

Прислать комментарий     Решение

Задача 65030

Темы:   [ Правильный (равносторонний) треугольник ]
[ Биссектриса угла (ГМТ) ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведены биссектрисы AA', BB', CC'. Известно, что в треугольнике A'B'C' эти прямые также являются биссектрисами.
Верно ли, что треугольник ABC равносторонний?

Прислать комментарий     Решение

Задача 108634

Темы:   [ Вспомогательные равные треугольники ]
[ Биссектриса угла (ГМТ) ]
Сложность: 3+
Классы: 8,9

BD – биссектриса треугольника ABC. Точка E выбрана так, что  ∠EAB = ∠ACB,  AE = DC,  и при этом отрезок ED пересекается с отрезком AB в точке K. Докажите, что  KE = KD.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 66]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .