ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Циркулем и линейкой разбейте данный треугольник на два меньших треугольника с одинаковой суммой квадратов сторон. Высоты остроугольного треугольника ABC, проведённые из вершин B и C, равны 7 и 9, а медиана AM равна 8. Точки P и Q симметричны точке M относительно сторон AC и AB соответственно. Найдите периметр четырёхугольника APMQ.
Даны две параллельные прямые и секущая. С помощью циркуля и линейки постройте окружность, касающуюся всех трёх прямых.
В угол величины 2
Сфера, вписанная в пирамиду SABC, касается граней SAB, SBC, SCA в точках D, E, F соответственно. Докажите, что любое натуральное число, десятичная запись которого состоит из 3n одинаковых цифр, делится на 37.
Две прямые проходят через точку M и касаются окружности в
точках A и B. Проведя радиус OB, продолжают его за точку B на
расстояние BC = OB. Докажите, что
Ваня задумал два положительных числа x и y. Он записал числа x + y, x – y, xy и x/y и показал их Пете, но не сказал, какое число какой операцией получено. Докажите, что Петя сможет однозначно восстановить x и y.
В треугольнике KMN проведены высота NA, биссектриса NB и медиана NC, которые делят угол KNM на четыре равные части. Найдите длины высоты NA, биссектрисы NB и медианы NC, если радиус описанной около треугольника KMN окружности равен R.
В параллелограмме ABCD точка E – середина AD. Точка F – основание перпендикуляра, опущенного из B на прямую CE.
Две окружности радиусов R и r (R > r) касаются внешне в точке C. К ним проведена общая внешняя касательная AB, где A и B — точки касания. Найдите стороны треугольника ABC.
а) Натуральные числа x, x² и x³ начинаются с одной и той же цифры. Обязательно ли эта цифра – единица? Действительные числа a, b, c, d, по модулю большие единицы,
удовлетворяют соотношению abc + abd + acd + bcd + a + b + c + d = 0.
Прямая касается окружности с центром O в точке A. Точка C на этой прямой и точка D на окружности расположены по разные стороны от прямой OA. Найдите угол CAD, если угол AOD равен 110o.
С помощью циркуля и линейки постройте точку, из которой данный круг и данный отрезок видны под данными углами.
С помощью циркуля и линейки постройте равносторонний треугольник ABC так, чтобы его вершины лежали на трёх данных параллельных прямых.
|
Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 487]
На столе лежат четыре одинаковые монеты. Разрешается двигать монеты, не отрывая их от стола. Нужно расположить (не пользуясь измерительными инструментами!) монеты так, чтобы можно было положить на стол пятую монету такого же размера, касающуюся этих четырёх.
С помощью циркуля и линейки постройте параллелограмм по основанию, высоте и углу между диагоналями.
Две окружности O и O1 пересекаются в точке A . Провести через точку A такую прямую, чтобы отрезок BC , высекаемый на ней окружностями O и O1 , был равен данному.
Докажите, что все корни уравнения a(z – b)n = c(z – d )n, где a, b, c, d – заданные комплексные числа, расположены на одной окружности или прямой.
С помощью циркуля и линейки постройте равносторонний треугольник ABC так, чтобы его вершины лежали на трёх данных параллельных прямых.
Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 487]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке