ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны окружность S и точки A и B вне ее. Для каждой прямой l, проходящей через точку A и пересекающей окружность S в точках M и N, рассмотрим описанную окружность треугольника BMN. Докажите, что все эти окружности имеют общую точку, отличную от точки B. Решение |
Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 401]
Окружность радиуса R, проведённая через вершины A, B и C прямоугольной трапеции ABCD ( A = B = 90o) пересекает отрезки AD и CD соответственно в точках M и N, причём AM : AD = CN : CD = 1 : 3. Найдите площадь трапеции.
Радиусы окружностей S1 и S2, касающихся в точке A, равны R и r (R > r). Найдите длину касательной, проведённой к окружности S2 из точки B, лежащей на окружности S1, если известно, что AB = a. (Разберите случаи внутреннего и внешнего касания).
Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 401] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|