ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны окружность S, точки A и B на ней и точка C хорды AB. Для каждой окружности S', касающейся хорды AB в точке C и пересекающей окружность S в точках P и Q, рассмотрим точку M пересечения прямых AB и PQ. Докажите, что положение точки M не зависит от выбора окружности S'. Решение |
Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 401]
Окружность радиуса R, проведённая через вершины A, B и C прямоугольной трапеции ABCD ( A = B = 90o) пересекает отрезки AD и CD соответственно в точках M и N, причём AM : AD = CN : CD = 1 : 3. Найдите площадь трапеции.
Радиусы окружностей S1 и S2, касающихся в точке A, равны R и r (R > r). Найдите длину касательной, проведённой к окружности S2 из точки B, лежащей на окружности S1, если известно, что AB = a. (Разберите случаи внутреннего и внешнего касания).
Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 401] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|