Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Треугольники ACC1 и BCC1 равны. Их вершины A и B лежат по разные стороны от прямой CC1.
Докажите, что треугольники ABC и ABC1 – равнобедренные.

Вниз   Решение


На окружности отмечено 100 точек. Может ли при этом оказаться ровно 1000 прямоугольных треугольников, все вершины которых — отмеченные точки?

ВверхВниз   Решение


Можно ли разбить множество целых чисел на три подмножества так, чтобы для любого целого значения n числа n, n - 50, n + 1987 принадлежали трём разным подмножествам?

ВверхВниз   Решение


Докажите, что треугольники abc и a'b'c' собственно подобны, тогда и только тогда, когда

a'(b - c) + b'(c - a) + c'(a - b) = 0.


ВверхВниз   Решение


Пусть A — произвольный угол, B и C — острые углы. Всегда ли существует такой угол X, что

sin X = $\displaystyle {\frac{\sin B\sin C}{1-\cos A\cos B\cos C}}$?

(Из `` Воображаемой геометрии'' Н. И. Лобачевского).

ВверхВниз   Решение


На одной из медиан треугольника ABC нашлась такая точка P, что PAB=PBC=PCA. Докажите, что на другой медиане найдется такая точка Q, что QBA=QCB=QAC.

ВверхВниз   Решение


Автор: Колосов В.

Пусть x, y, z – любые числа из интервала  (0, π/2).  Докажите неравенство  

ВверхВниз   Решение


На плоскости даны три попарно пересекающиеся окружности. Через точки пересечения каждых двух из них проведена прямая.
Докажите, что эти три прямые пересекаются в одной точке или параллельны.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 125]      



Задача 61191

 [Радикальная ось двух окружностей]
Темы:   [ Радикальная ось ]
[ ГМТ - прямая или отрезок ]
Сложность: 3+
Классы: 9,10,11

Докажите, что геометрическое место точек M, cтепень которых относительно окружностей S1 и S2 одинакова, является прямой.
Такая прямая называется радикальной осью окружностей S1 и S2.

Прислать комментарий     Решение

Задача 61192

 [Радикальный центр трёх окружностей]
Тема:   [ Радикальная ось ]
Сложность: 3+
Классы: 9,10,11

На плоскости даны три окружности S1, S2 и S3. Докажите, что если две радикальных оси этих окружностей пересекаются в точке Q, то третья радикальная ось также проходит через эту точку.
Точка Q называется радикальным центром окружностей S1, S2 и S3.

Прислать комментарий     Решение

Задача 56717

Темы:   [ Радикальная ось ]
[ Пересекающиеся окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Выход в пространство ]
Сложность: 4-
Классы: 9

На плоскости даны три попарно пересекающиеся окружности. Через точки пересечения каждых двух из них проведена прямая.
Докажите, что эти три прямые пересекаются в одной точке или параллельны.

Прислать комментарий     Решение

Задача 67379

Темы:   [ Радикальная ось ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4-
Классы: 8,9,10,11

На одной из медиан треугольника ABC нашлась такая точка P, что PAB=PBC=PCA. Докажите, что на другой медиане найдется такая точка Q, что QBA=QCB=QAC.
Прислать комментарий     Решение


Задача 53606

Темы:   [ Радикальная ось ]
[ ГМТ - прямая или отрезок ]
Сложность: 4
Классы: 8,9

Даны две окружности с центрами O1 и O2 . Докажите, что геометрическим местом точек M , для которых касательные к данным окружностям равны, есть прямая, перпендикулярная O1O2 , или часть такой прямой. В каких случаях искомым геометрическим местом является вся прямая?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 125]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .