ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Докажите, что произвольная последовательность Qn, заданная условиями

Q0 = $\displaystyle \alpha$,    Q1 = $\displaystyle \beta$,    Qn + 2 = Qn + 1 + Qn    (n $\displaystyle \geqslant$ 0),

может быть выражена через числа Фибоначчи Fn и числа Люка Ln (определение чисел Люка смотри в задаче 3.133).

Вниз   Решение


Стороны треугольника равны a, b, c. Докажите, что медиана, проведённая к стороне c, равна $ {\frac{1}{2}}$$ \sqrt{2a^{2}+2b^{2}-c^{2}}$.

ВверхВниз   Решение


Первоклассник Петя знает только цифру 1. Докажите, что он может написать число, делящееся на 1989.

ВверхВниз   Решение


Выпишем в ряд все правильные дроби со знаменателем n и сделаем возможные сокращения. Например, для  n = 12  получится следующий ряд чисел:  0/1, 1/12, 1/6, 1/4, 1/3, 5/12, 1/2, 7/12, 2/3, 3/4, 5/6, 11/12  Сколько получится дробей со знаменателем d, если d – некоторый делитель числа n?

ВверхВниз   Решение


Из чисел x1, x2, x3, x4, x5 можно образовать десять попарных сумм; обозначим их через a1, a2, ..., a10. Доказать, что зная числа a1, a2, ..., a10 (но не зная, разумеется, суммой каких именно двух чисел является каждое из них), можно восстановить числа x1, x2, x3, x4, x5.

ВверхВниз   Решение


Существует ли правильный треугольник с вершинами в узлах целочисленной решетки?

ВверхВниз   Решение


На сторонах BC, CA и AB треугольника ABC (или на их продолжениях) взяты точки A1, B1 и C1, лежащие на одной прямой. Докажите, что

$\displaystyle {\frac{AB}{BC_1}}$ . $\displaystyle {\frac{C_1A_1}{B_1A_1}}$ . $\displaystyle {\frac{A_1B}{BC}}$ . $\displaystyle {\frac{CB_1}{B_1A}}$ = 1.


ВверхВниз   Решение


Из вершины C прямого угла треугольника ABC опущена высота CK, и в треугольнике ACK проведена биссектриса CE. Прямая, проходящая через точку B параллельно CE, пересекает CK в точке F. Докажите, что прямая EF делит отрезок AC пополам.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 181]      



Задача 56904

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 5
Классы: 9

Из вершины C прямого угла треугольника ABC опущена высота CK, и в треугольнике ACK проведена биссектриса CE. Прямая, проходящая через точку B параллельно CE, пересекает CK в точке F. Докажите, что прямая EF делит отрезок AC пополам.
Прислать комментарий     Решение


Задача 56905

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 5
Классы: 9

На прямых BC, CA и AB взяты точки A1, B1 и C1, причем точки A1, B1 и C1 лежат на одной прямой. Прямые, симметричные прямым AA1, BB1 и CC1 относительно соответствующих биссектрис треугольника ABC, пересекают прямые BC, CA и AB в точках A2, B2 и C2. Докажите, что точки A2, B2 и C2 лежат на одной прямой.
Прислать комментарий     Решение


Задача 56914

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 5
Классы: 8,9,10,11

Дан треугольник ABC. На прямых AB, BC и CA взяты точки C1, A1 и B1, причем k из них лежат на сторонах треугольника и 3 - k — на продолжениях сторон. Пусть

R = $\displaystyle {\frac{BA_1}{CA_1}}$ . $\displaystyle {\frac{CB_1}{AB_1}}$ . $\displaystyle {\frac{AC_1}{BC_1}}$.


Докажите, что:
а) точки A1, B1 и C1 лежат на одной прямой тогда и только тогда, когда R = 1 и k четно (Менелай);
б) прямые AA1, BB1 и CC1 пересекаются в одной точке или параллельны тогда и только тогда, когда R = 1 и k нечетно (Чева).
Прислать комментарий     Решение

Задача 56915

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 5
Классы: 9

Вписанная (или вневписанная) окружность треугольника ABC касается прямых BC, CA и AB в точках A1, B1 и C1. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке.

Прислать комментарий     Решение


Задача 56917

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 5
Классы: 9

Докажите, что высоты остроугольного треугольника пересекаются в одной точке.
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 181]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .