ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Три гнома живут в разных домах на плоскости и ходят со скоростями 1, 2 и 3 км/ч соответственно. Какое место для ежедневных встреч нужно им выбрать, чтобы сумма времён, необходимых каждому из гномов на путь от своего дома до этого места (по прямой), была наименьшей? Доказать, что число штатов США с нечётным числом соседей чётно.
На катете BC прямоугольного треугольника ABC как на диаметре построена окружность, пересекающая гипотенузу в точке D так, что AD : DB = 1 : 4. Найдите высоту, опущенную из вершины C прямого угла на гипотенузу, если известно, что катет BC равен 10.
Было семь ящиков. В некоторые из них положили еще по семь ящиков (не вложенных друг в друга) и т. д. В итоге стало 10 непустых ящиков. Хорда окружности пересекает некоторый диаметр под углом, равным 30°, и делит его на отрезки, равные a и b. Найдите расстояние от центра окружности до этой хорды. У треугольника известны стороны a = 2, b = 3 и
площадь S =
Угол при вершине равнобедренного треугольника равен 40o. Одна из боковых сторон служит диаметром полуокружности, которая делится другими сторонами на три части. Найдите эти части.
Окружность с центром, расположенным внутри прямого угла, касается одной стороны угла, пересекает другую сторону в точках A и B и биссектрису угла в точках C и D. AB = В треугольнике ABC проведены высоты AA1, BB1
и CC1. Пусть
A1A2, B1B2 и C1C2 — диаметры окружности
девяти точек треугольника ABC. Докажите, что прямые AA2, BB2
и CC2 пересекаются в одной точке (или параллельны).
|
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 70]
Докажите, что если прямая Эйлера проходит через
центр вписанной окружности треугольника, то треугольник равнобедренный.
Точки A2 , B2 и C2 – середины высот AA1 , BB1 и CC1 остроугольного треугольника ABC . Найдите сумму углов B2A1C2 , C2B1A2 и A2C1B2 .
Вписанная окружность касается сторон треугольника ABC
в точках A1, B1 и C1. Докажите, что прямая Эйлера
треугольника A1B1C1 проходит через центр описанной окружности
треугольника ABC.
Пусть A1, B1 и C1 — основания высот AA1, BB1 и CC1 треугольника ABC. Докажите, что прямые Эйлера треугольников AB1C1, BA1C1 и CA1B1 пересекаются на окружности девяти точек треугольника ABC.
В треугольнике ABC проведены высоты AA1, BB1
и CC1. Пусть
A1A2, B1B2 и C1C2 — диаметры окружности
девяти точек треугольника ABC. Докажите, что прямые AA2, BB2
и CC2 пересекаются в одной точке (или параллельны).
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 70]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке