ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи При каких значениях параметра a уравнение (a – 1)x² – 2(a + 1)x + 2(a + 1) = 0 имеет только одно неотрицательное решение? Докажите, что уравнение прямой на комплексной плоскости всегда может быть записано в виде Bz – B z + C = 0, где C – чисто мнимое число. В прямоугольнике 3×n стоят фишки трёх цветов, по n штук
каждого цвета. На стол кладут правильный 100-угольник, в вершинах которого написаны числа 1, 2, ..., 100. Затем эти числа переписывают в порядке удаления от переднего края стола. Если две вершины находятся на равном расстоянии от края, сначала выписывается левое число, затем правое. Выписаны всевозможные наборы чисел, соответствующие разным положениям 100-угольника. Вычислить сумму чисел, стоящих в этих наборах на 13-х местах слева. При каких значениях параметра a оба корня уравнения (2 – a)x² – 3ax + 2a = 0 больше ½? На доске написаны 2$n$ последовательных целых чисел. За ход можно разбить написанные числа на пары произвольным образом и каждую пару чисел заменить на их сумму и разность (не обязательно вычитать из большего числа меньшее, все замены происходят одновременно). Докажите, что на доске больше никогда не появятся 2$n$ последовательных чисел. В соревновании участвуют 32 боксёра. Каждый боксёр в течение одного дня
может проводить только один бой. Известно, что все боксёры имеют разную силу,
и что сильнейший всегда выигрывает. Докажите, что за 15 дней можно определить место каждого боксёра.
Отрезок длиной 3n разбивается на три равные части. Первая и третья из них
называются отмеченными. Каждый из отмеченных отрезков разбивается на три части,
из которых первая и третья снова называются отмеченными и т.д. до тех пор, пока
не получатся отрезки длиной 1. Концы всех отмеченных отрезков называются
отмеченными точками. Доказать, что для любого целого
k(1 Сколько существует двузначных чисел, у которых цифра десятков больше цифры единиц? Доказать, что для любых трёх бесконечных последовательностей натуральных чисел
ap
Диагонали четырёхугольника ABCD равны и пересекаются в точке O. Серединные перпендикуляры к сторонам AB и CD пересекаются в точке P, а серединные перпендикуляры к сторонам BC и AD – в точке Q. Найдите угол POQ. Хорда стягивает дугу в 90° и равна 16. Найдите её расстояние от центра. Прямые у = kx + b, у = 2kx + 2b и у = bx + k различны и пересекаются в одной точке. Какими могут быть ее координаты? Окружность радиуса r1 касается сторон DA, AB
и BC выпуклого четырехугольника ABCD, окружность радиуса r2 —
сторон AB, BC и CD; аналогично определяются r3 и r4.
Докажите, что
|
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 61]
Окружность радиуса r1 касается сторон DA, AB
и BC выпуклого четырехугольника ABCD, окружность радиуса r2 —
сторон AB, BC и CD; аналогично определяются r3 и r4.
Докажите, что
Проекции двух точек на стороны четырёхугольника лежат на двух различных концентрических окружностях (проекции каждой точки образуют вписанный четырёхугольник, а радиусы соответствующих окружностей различны). Докажите, что четырёхугольник – параллелограмм.
О выпуклом четырехугольнике ABCD известно, что
радиусы окружностей, вписанных в треугольники
ABC, BCD, CDA
и DAB, равны между собой. Докажите, что ABCD — прямоугольник.
Дан выпуклый четырехугольник ABCD;
A1, B1, C1
и D1 — центры описанных окружностей треугольников
BCD, CDA, DAB
и ABC. Аналогично для четырехугольника
A1B1C1D1 определяются
точки
A2, B2, C2 и D2. Докажите, что четырехугольники ABCD
и
A2B2C2D2 подобны, причем коэффициент их подобия равен
|(ctgA + ctgC)(ctgB + ctgD)/4|.
Окружности, диаметрами которых служат стороны AB
и CD выпуклого четырехугольника ABCD, касаются сторон CD и AB
соответственно. Докажите, что BC| AD.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 61]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке