ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Существует ли такое вещественное α, что число cos α иррационально, а все числа cos 2α, cos 3α, cos 4α, cos 5α рациональны?

Вниз   Решение


Две окружности пересекаются в точках M и K. Через M и K проведены прямые AB и CD соответственно, пересекающие первую окружность в точках A и C, вторую в точках B и D. Докажите, что  AC || BD.

ВверхВниз   Решение


С помощью циркуля и линейки постройте точку, из которой две данные окружности были бы видны под данными углами.

ВверхВниз   Решение


Попав в новую компанию, Чичиков узнавал, кто с кем знаком. А чтобы запомнить это, он рисовал окружность и изображал каждого члена компании хордой, причём хорды знакомых между собой пересекались, а незнакомых – нет. Чичиков уверен, что такой набор хорд есть для любой компании. Прав ли он? (Совпадение концов хорд считается пересечением.)

ВверхВниз   Решение


Пусть m, n и k – натуральные числа, причём  m > n.  Какое из двух чисел больше:

    или  

(В каждом выражении k знаков квадратного корня, m и n чередуются.)

ВверхВниз   Решение


Докажите, что окружность при осевой симметрии переходит в окружность.

ВверхВниз   Решение


Через вершину A остроугольного треугольника ABC проведена прямая, параллельная стороне BC, равной a, и пересекающая окружности, построенные на сторонах AB и AC как на диаметрах, в точках M и N, отличных от A. Найдите MN.

ВверхВниз   Решение


Докажите, что любая окружность пучка либо пересекает радикальную ось в двух фиксированных точках (эллиптический пучок), либо касается радикальной оси в фиксированной точке (параболический пучок), либо не пересекает радикальную ось (гиперболический пучок).

ВверхВниз   Решение


Сложите шесть спичек так, чтобы они образовали четыре равносторонних треугольника.

ВверхВниз   Решение


Автор: Фольклор

Коэффициенты квадратного уравнения  x² + px + q = 0  изменили не больше чем на 0,001.
Может ли больший корень уравнения измениться больше, чем на 1000?

ВверхВниз   Решение


Докажите, что радикальная ось двух пересекающихся окружностей проходит через точки их пересечения.

ВверхВниз   Решение


Докажите, что если  ctg($ \alpha$/2) = (b + c)/a, то треугольник прямоугольный.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



Задача 57654

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 4
Классы: 9

Докажите, что если  ctg($ \alpha$/2) = (b + c)/a, то треугольник прямоугольный.
Прислать комментарий     Решение


Задача 57655

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 4
Классы: 9

Продолжения биссектрис треугольника ABC пересекают описанную окружность в точках A1, B1 и C1. Докажите, что  SABC/SA1B1C1 = 2r/R, где r и R — радиусы вписанной и описанной окружностей треугольника ABC.
Прислать комментарий     Решение


Задача 57656

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 4
Классы: 9

Докажите, что сумма котангенсов углов треугольника ABC равна сумме котангенсов углов треугольника, составленного из медиан треугольника ABC.
Прислать комментарий     Решение


Задача 57638

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 4+
Классы: 9

В прямоугольном треугольнике ABC с прямым углом A на высоте AD как на диаметре построена окружность, пересекающая сторону AB в точке K и сторону AC в точке M. Отрезки AD и KM пересекаются в точке L. Найдите острые углы треугольника ABC, если известно, что  AK : AL = AL : AM.
Прислать комментарий     Решение


Задача 57639

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 4+
Классы: 9

В треугольнике ABC угол C вдвое больше угла A и b = 2a. Найдите углы этого треугольника.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .