ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Даны прямые a, b, c, d, проходящие через одну точку, и прямая l, через эту точку не проходящая. Пусть A, B, C, D — точки пересечения прямой l с прямыми a, b, c, d соответственно. Докажите, что (abcd )= (ABCD). б) Докажите, что двойное отношение четверки точек сохраняется при проективных преобразованиях. Решение |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 114]
Дана тригармоническая четвёрка точек A, B, C и D (то есть AB·CD = AC·BD = AD·BC). Пусть A1 – такая отличная от A точка, что четвёрка точек A1, B, C и D тригармоническая. Точки B1, C1 и D1 определяются аналогично. Докажите, что
б) Докажите, что двойное отношение четверки точек сохраняется при проективных преобразованиях.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 114] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|