ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи По окружности выписано 10 чисел, сумма которых равна 100. Известно, что сумма каждых трёх чисел, стоящих рядом, не меньше 29. Из вершины тупого угла А треугольника АВС опущена высота AD. Проведена окружность с центром D и радиусом DA, которая вторично пересекает стороны AB и AC в точках M и N соответственно. Найдите AC, если AB = c, AM = m и AN = n. В связном графе степени четырёх вершин равны 3, а степени остальных вершин равны 4. В прямоугольном треугольнике ABC (∠B = 90°) проведена высота BH. Окружность, вписанная в треугольник ABH, касается сторон AB, AH в точках H1, B1 соответственно; окружность, вписанная в треугольник CBH, касается сторон CB, CH в точках H2, B2 соответственно. Пусть O – центр описанной окружности треугольника H1BH2. Докажите, что OB1 = OB2. В стране 64 города, некоторые пары из них соединены дорогой, но нам неизвестно, какие именно. Можно выбрать любую пару городов и получить ответ на вопрос “есть ли дорога между ними?”. Нужно узнать, можно ли в этой стране добраться от любого города до любого другого, двигаясь по дорогам. Докажите, что не существует алгоритма, позволяющего сделать это менее чем за 2016 вопросов. Полуокружность с диаметром AD касается катета BC прямоугольного треугольника ABC в точке М (см. рисунок). а) Докажите, что производящая функция последовательности чисел Фибоначчи
F(x) = F0 + F1x + F2x² + ... + Fnxn + ... может быть записана в виде б) Пользуясь результатом задачи 61490, получите формулу Бине (см. задачу 60578. Каждое из рёбер полного графа с 17 вершинами покрашено в один из трёх цветов. Лёша нарисовал геометрическую картинку, обведя четыре раза свой пластмассовый прямоугольный треугольник, прикладывая короткий катет к гипотенузе и совмещая вершину острого угла с вершиной прямого. Оказалось, что "замыкающий" пятый треугольник – равнобедренный (см. рис., равны именно отмеченные стороны). Найдите острые углы Лёшиного треугольника? Точка D – середина гипотенузы АВ прямоугольного треугольника ABC, ∠ВАС = 35°. Точка B1 симметрична точке B относительно прямой СD. На окружности даны 10 точек. Сколькими способами можно провести пять отрезков, не имеющих общих точек, с концами в данных точках? В стране Мара расположено несколько замков. Из каждого замка ведут три дороги. Из какого-то замка выехал рыцарь. Странствуя по дорогам, он из каждого замка, стоящего на его пути, поворачивает либо направо, либо налево по отношению к дороге, по которой приехал. Рыцарь никогда не сворачивает в ту сторону, в которую он свернул перед этим. Доказать, что когда-нибудь он вернётся в исходный замок. Докажите, что в плоском графе есть вершина, степень которой не превосходит 5. Существует ли прямоугольный треугольник, у которого длины двух сторон – целые числа, а длина третьей стороны равна
Имеются два сосуда. В них разлили 1 л воды. Из
первого сосуда переливают половину воды во второй, затем из
второго переливают половину оказавшейся в нем воды в первый,
затем из первого сосуда переливают половину оказавшейся в нем
воды во второй и т. д. Докажите, что независимо от того, сколько
воды было сначала в каждом из сосудов, после 100 переливаний в
них будет
На плоскости отмечено 100 точек, никакие три из которых не лежат на одной прямой. Некоторые пары точек соединены отрезками. Известно, что никакая тройка отрезков не образует треугольника. Какое наибольшее число отрезков могло быть проведено? Международная комиссия состоит из девяти человек. Материалы комиссии хранятся в сейфе. Сколько замков должен иметь сейф, сколько ключей для них нужно изготовить и как их разделить между членами комиссии, чтобы доступ к сейфу был возможен тогда и только тогда, когда соберутся не менее шести членов комиссии? Прямая, перпендикулярная гипотенузе AB прямоугольного треугольника АВС, пересекает прямые АС и ВС в точках Е и D соответственно. В некоторой стране каждые два города соединены либо авиалинией, либо железной дорогой. Докажите, что Найти количество нечётных чисел в n-й строке треугольника Паскаля. Какое наименьшее число карточек спортлото (6 из 49) надо купить, чтобы наверняка хоть в одной из них был угадан хоть один номер? Не встречается ли В столовой предложено на выбор шесть блюд. Каждый день Вася берёт некоторый набор блюд (возможно, не берет ни одного блюда), причём этот набор блюд должен быть отличен от всех наборов, которые он брал в предыдущие дни. Какое наибольшее количество дней Вася сможет питаться по таким правилам и какое количество блюд он в среднем при этом будет съедать за день? На плоскости нарисовано несколько точек, некоторые пары точек соединены отрезками. Известно, что из каждой точки выходит не более k отрезков. Докажите, что точки можно покрасить в k + 1 цвет таким образом, чтобы каждые две точки, соединенные отрезком, были покрашены в разные цвета. Пусть a и k > 0 произвольные числа. Определим последовательность {an} равенствами
a0 = a, an + 1 =
Докажите, что при любом неотрицательном n выполняется равенство
В стране есть n > 1 городов, некоторые пары городов соединены двусторонними беспосадочными авиарейсами. При этом между каждыми двумя городами существует единственный авиамаршрут (возможно, с пересадками). Мэр каждого города X подсчитал количество таких нумераций всех городов числами от 1 до n, что на любом авиамаршруте, начинающемся в X, номера городов идут в порядке возрастания. Все мэры, кроме одного, заметили, что их результаты подсчётов делятся на 2016. Докажите, что и у оставшегося мэра результат также делится на 2016. На книжной полке стоят 30 томов энциклопедии в некотором порядке. За одну операцию разрешается менять местами любые два соседних тома. За какое наименьшее число операций можно гарантированно выстроить все тома в правильном порядке (с первого по тридцатый слева направо) независимо от начального положения? Жили-были двадцать шпионов. Каждый из них написал донос на десять своих коллег.
К чему будет стремиться последовательность из предыдущей
задачи
9.46, если в качестве начального условия выбрать x1 = - 1?
a1, a2, ..., a101 – такая перестановка чисел 2, 3, ..., 102, что ak делится на k при каждом k. Найти все такие перестановки. Имеются четыре гири и двухчашечные весы без стрелки. Сколько всего различных по весу грузов можно точно взвесить этими гирями, если
Пусть M – конечное множество чисел. Известно, что среди любых трёх его элементов найдутся два, сумма которых принадлежит M. Пусть p – простое число и p > 3. |
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 201]
Докажите, что число 22n – 1 имеет по крайней мере n различных простых делителей.
Докажите, что числа p и p + 2 являются простыми числами-близнецами тогда и только тогда, когда 4((p – 1)! + 1) + p ≡ 0 (mod p² + 2p).
Дано простое p и целое a, не делящееся на p. Пусть k – наименьшее натуральное число, при котором ak ≡ 1 (mod p). Докажите, что p – 1 делится на k.
Пусть p – простое число и p > 3.
Пусть p – простое число и p > 5. Докажите,
что если разрешимо сравнение x4 + x3 + x2 + x + 1 ≡ 0 (mod p), то
p ≡ 1 (mod 5).
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 201]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке