ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Один из корней уравнения  x² + ax + b = 0  равен  1 + .  Найдите a и b, если известно, что они рациональны.

   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 93]      



Задача 60855

Темы:   [ Квадратные уравнения. Формула корней ]
[ Рациональные и иррациональные числа ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 3+
Классы: 8,9,10

Один из корней уравнения  x² + ax + b = 0  равен  1 + .  Найдите a и b, если известно, что они рациональны.

Прислать комментарий     Решение

Задача 60866

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Рациональные и иррациональные числа ]
[ Тригонометрия (прочее) ]
Сложность: 3+
Классы: 9,10,11

Дана квадратная сетка на плоскости и треугольник с вершинами в узлах сетки. Докажите, что тангенс любого угла в треугольнике — число рациональное.

Прислать комментарий     Решение

Задача 60869

Темы:   [ Целочисленные решетки (прочее) ]
[ Рациональные и иррациональные числа ]
Сложность: 3+
Классы: 8,9,10

Докажите, что на окружности с центром в точке    лежит не более одной точки целочисленной решетки.

Прислать комментарий     Решение

Задача 61013

 [Теорема о рациональных корнях многочлена]
Темы:   [ Целочисленные и целозначные многочлены ]
[ Рациональные и иррациональные числа ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9,10

Докажите, что если  (p, q) = 1  и  p/q  – рациональный корень многочлена  P(x) = anxn + ... + a1x + a0  с целыми коэффициентами, то
  а)  a0 делится на p;
  б)  an делится на q.

Прислать комментарий     Решение

Задача 65555

Темы:   [ Треугольники (прочее) ]
[ Рациональные и иррациональные числа ]
[ Замечательные точки и линии в треугольнике (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10,11

Назовём треугольник рациональным, если все его углы измеряются рациональным числом градусов. Назовём точку внутри треугольника рациональной, если при соединении её отрезками с вершинами мы получим три рациональных треугольника. Докажите, что внутри любого остроугольного рационального треугольника найдутся как минимум три различные рациональные точки.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 93]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .