ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Прямоугольный треугольник с острым углом α расположен внутри окружности радиуса R так, что гипотенуза треугольника является хордой окружности, а вершина прямого угла треугольника лежит на диаметре, параллельном гипотенузе. Найдите площадь этого треугольника.

Вниз   Решение


Дан центрально-симметричный октаэдр $ABCA'B'C'$ (пары $A$ и $A'$, $B$ и $B'$, $C$ и $C'$ противоположны), такой, что суммы плоских углов при каждой из вершин октаэдра равны $240^{\circ}$. В треугольниках $ABC$ и $A'BC$ отмечены точки Торричелли $T_1$ и $T_2$. Докажите, что расстояния от $T_1$ и $T_2$ до $BC$ равны.

ВверхВниз   Решение


Функция Эйлера φ(n) определяется как количество чисел от 1 до n, взаимно простых с n. Найдите   a) φ(17);   б) φ(p);   в) φ(p²);   г) φ(pα).

ВверхВниз   Решение


Противоположные стороны выпуклого шестиугольника попарно равны и параллельны. Докажите, что он имеет центр симметрии.

ВверхВниз   Решение


На двух параллельных прямых a и b выбраны точки A1, A2, ..., Am и B1, B2, ..., Bn соответственно и проведены все отрезки вида AiBj
(1 ≤ im,  1 ≤ jn).  Сколько будет точек пересечения, если известно, что никакие три из этих отрезков в одной точке не пересекаются?

ВверхВниз   Решение


В классе учится 23 человека. В течение года каждый ученик этого класса один раз праздновал день рождения, на который пришли некоторые (хотя бы один, но не все) его одноклассники. Могло ли оказаться, что каждые два ученика этого класса встретились на таких празднованиях одинаковое число раз? (Считается, что на каждом празднике встретились каждые два гостя, а также именинник встретился со всеми гостями.)

ВверхВниз   Решение


Пусть a, b, c – стороны треугольника, p – его полупериметр, а r и R – радиусы вписанной и описанной окружностей соответственно. Составьте уравнение с коэффициентами, зависящими от p, r, R, корнями которого являются числа a, b, c. Докажите равенство

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 49]      



Задача 61044

Темы:   [ Теорема Виета ]
[ Кубические многочлены ]
[ Арифметическая прогрессия ]
Сложность: 3-
Классы: 8,9,10

При каких a и b уравнение  x3 + ax + b = 0  имеет три различных решения, составляющих арифметическую прогрессию?

Прислать комментарий     Решение

Задача 61257

Темы:   [ Теорема Виета ]
[ Кубические многочлены ]
Сложность: 3
Классы: 8,9,10

Докажите, что уравнение  x³ + ax² – b = 0,  где a и b вещественные и  b > 0,  имеет один и только один положительный корень.

Прислать комментарий     Решение

Задача 66600

Темы:   [ Теорема Виета ]
[ Кубические многочлены ]
Сложность: 3
Классы: 8,9,10,11

Автор: Фольклор

Многочлен $P(x)=x^3+ax^2+bx+c$ имеет три различных действительных корня, наибольший из которых равен сумме двух других. Докажите, что $c>ab$.
Прислать комментарий     Решение


Задача 61045

Темы:   [ Теорема Виета ]
[ Формулы для площади треугольника ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3+
Классы: 10,11

Пусть a, b, c – стороны треугольника, p – его полупериметр, а r и R – радиусы вписанной и описанной окружностей соответственно. Составьте уравнение с коэффициентами, зависящими от p, r, R, корнями которого являются числа a, b, c. Докажите равенство

Прислать комментарий     Решение

Задача 61047

Темы:   [ Теорема Виета ]
[ Кубические многочлены ]
[ Возрастание и убывание. Исследование функций ]
Сложность: 3+
Классы: 10,11

В каком из двух уравнений сумма квадратов корней больше
  а)  4x3 – 18x2 + 24x = 8,     4x3 – 18x2 + 24x = 9;
  б)  4x3 – 18x2 + 24x = 11,     4x3 – 18x2 + 24x = 12?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 49]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .