ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть x1 < x2 < ... < xn – действительные числа. Докажите, что для любых y1, y2, ..., yn существует единственнный многочлен f(x) степени не выше n – 1, такой, что f(x1) = y1, ..., f(xn) = yn. Решение |
Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 965]
Найдите наибольший общий делитель многочленов P(x), Q(x) и представьте его в виде P(x)U(x) + Q(x)V(x):
Найдите (xn – 1, xm – 1).
а) Известно, что x + y = u + v, x2 + y2 = u2 + v2. Докажите, что при любом натуральном n выполняется равенство xn + yn + zn = un + vn + tn.
Пусть x1 < x2 < ... < xn – действительные числа. Докажите, что для любых y1, y2, ..., yn существует единственнный многочлен f(x) степени не выше n – 1, такой, что f(x1) = y1, ..., f(xn) = yn.
Корабль с постоянной скоростью проплывает мимо небольшого острова. Капитан каждый час измеряет расстояние до острова.
Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 965] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|