ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть  x1 < x2 < ... < xn  – действительные числа. Докажите, что для любых  y1, y2, ..., yn  существует единственнный многочлен  f(x) степени не выше  n – 1,  такой, что  f(x1) = y1, ...,  f(xn) = yn.

   Решение

Задачи

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 965]      



Задача 60991

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Алгоритм Евклида ]
Сложность: 4-
Классы: 8,9,10,11

Найдите наибольший общий делитель многочленов P(x), Q(x) и представьте его в виде  P(x)U(x) + Q(x)V(x):
  а)  P(x) = x4 + x³ – 3x² – 4x – 1,  Q(x) = x³ + x² – x – 1;
  б)  P(x) = 3x4 – 5x³ + 4x² – 2x + 1,  Q(x) = 3x³ – 2x² + x – 1.

Прислать комментарий     Решение

Задача 60992

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Алгоритм Евклида ]
Сложность: 4-
Классы: 8,9,10,11

Найдите  (xn – 1, xm – 1).

Прислать комментарий     Решение

Задача 61039

Тема:   [ Теорема Виета ]
Сложность: 4-
Классы: 9,10,11

а) Известно, что  x + y = u + v,  x2 + y2 = u2 + v2.
Докажите, что при любом натуральном n выполняется равенство  xn + yn = un + vn.

б) Известно, что  x + y + z = u + v + t,  x2 + y2 + z2 = u2 + v2 + t2x3 + y3 + z3 = u3 + v3 + t3.
Докажите, что при любом натуральном n выполняется равенство  xn + yn + zn = un + vn + tn.

Прислать комментарий     Решение

Задача 61052

Тема:   [ Многочлен n-й степени имеет не более n корней ]
Сложность: 4-
Классы: 8,9,10

Пусть  x1 < x2 < ... < xn  – действительные числа. Докажите, что для любых  y1, y2, ..., yn  существует единственнный многочлен  f(x) степени не выше  n – 1,  такой, что  f(x1) = y1, ...,  f(xn) = yn.

Прислать комментарий     Решение

Задача 61056

Темы:   [ Интерполяционный многочлен Лагранжа ]
[ Задачи на движение ]
Сложность: 4-
Классы: 8,9,10,11

Корабль с постоянной скоростью проплывает мимо небольшого острова. Капитан каждый час измеряет расстояние до острова.
В 12, 14 и 15 часов расстояния равнялись 7, 5 и 11 километров соответственно.
Каким было расстояние до острова в 13 часов? Чему оно будет равно в 16 часов?

Прислать комментарий     Решение

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 965]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .