ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан квадратный лист бумаги со стороной 1. Отмерьте на этом листе расстояние ⅚ (лист можно сгибать, в том числе, по любому отрезку с концами на краях бумаги и разгибать обратно; после разгибания на бумаге остаётся след от линии сгиба). B некотором треугольнике биссектрисы двух внутренних углов продолжили до пересечения с описанной окружностью и получили две равные хорды. Bерно ли, что треугольник равнобедренный? Расставьте по кругу четыре единицы, три двойки и три тройки так, чтобы сумма любых трёх подряд стоящих чисел не делилась на 3. 30 тремя одинаковыми цифрами. Число 30 запишите в виде четырех различных выражений, из трех одинаковых цифр каждое. Цифры могут быть соединены знаками действий. Диагонали вписанного четырехугольника ABCD пересекаются в точке K. Прямая a пересекает плоскость α. Известно, что в этой плоскости найдутся 2011 прямых, равноудаленных от a и не пересекающих a. Квадрат и прямоугольник одинакового периметра имеют общий угол. Докажите, что точка пересечения диагоналей прямоугольника лежит на диагонали квадрата. Трапеция ABCD и параллелограмм MBDK расположены так, что стороны параллелограмма параллельны диагоналям трапеции (см. рис.). Докажите, что площадь серой части равна сумме площадей черных частей. Существуют ли два таких четырехугольника, что стороны первого меньше соответствующих сторон второго, а соответствующие диагонали больше? Докажите, что геометрическое место точек M, cтепень которых
относительно окружностей S1 и S2 одинакова, является прямой. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 125]
Докажите, что геометрическое место точек M, cтепень которых
относительно окружностей S1 и S2 одинакова, является прямой.
На плоскости даны три окружности S1, S2 и S3. Докажите, что если две радикальных оси этих окружностей пересекаются в точке Q, то третья радикальная ось также проходит через эту точку.
На плоскости даны три попарно пересекающиеся окружности. Через точки пересечения каждых двух из них проведена прямая.
На одной из медиан треугольника $ABC$ нашлась такая точка $P$, что $\angle PAB=\angle PBC=\angle PCA$. Докажите, что на другой медиане найдется такая точка $Q$, что $\angle QBA=\angle QCB=\angle QAC$.
Даны две окружности с центрами O1 и O2 . Докажите, что геометрическим местом точек M , для которых касательные к данным окружностям равны, есть прямая, перпендикулярная O1O2 , или часть такой прямой. В каких случаях искомым геометрическим местом является вся прямая?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 125]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке