Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 24 задачи
Версия для печати
Убрать все задачи

Можно ли представить число в виде суммы квадратов двух натуральных чисел?

Вниз   Решение


При каких целых значениях m число Р = 1 + 2m + 3m2 + 4m3 + 5m4 + 4m5 + 3m6 + 2m7 + m8 является квадратом целого числа?

ВверхВниз   Решение


Автор: Ивлев Б.М.

Каждая из девяти прямых разбивает квадрат на два четырёхугольника, площади которых относятся как 2 : 3. Докажите, что по крайней мере три из этих девяти прямых проходят через одну точку.

ВверхВниз   Решение


Высоты AA1 и BB1 треугольника ABC пересекаются в точке H. Прямая CH пересекает полуокружность с диаметром AB, проходящую через точки A1 и B1, в точке D. Отрезки AD и BB1 пересекаются в точке M, BD и AA1 – в точке N. Докажите, что описанные окружности треугольников B1DM и A1DN касаются.

ВверхВниз   Решение


На основаниях трапеции как на сторонах построены во внешнюю сторону два квадрата. Докажите, что отрезок, соединяющий центры квадратов, проходит через точку пересечения диагоналей трапеции.

ВверхВниз   Решение


Дан прямоугольный треугольник. Впишите в него прямоугольник с общим прямым углом, у которого диагональ минимальна.

ВверхВниз   Решение


В корзине лежало не более 70 грибов, среди которых 52% – белые. Если выкинуть три самых маленьких гриба, то белых станет половина.
Сколько грибов в корзине?

ВверхВниз   Решение


На сторонах AB и AC треугольника ABC взяты соответственно точки M и N, причём  MN || BC.  На отрезке MN взята точка P, причём  MP = 1/3 MN.  Прямая AP пересекает сторону BC в точке Q. Докажите, что  BQ = 1/3 BC.

ВверхВниз   Решение


Автор: Акопян Э.

В начале года в 7 классе учились 25 человек. После того как туда пришли семеро новеньких, процентный состав отличников увеличился на 10 (если в начале года он был a%, то теперь –  (a + 10)%).  Сколько теперь отличников в классе?

ВверхВниз   Решение


Шестиугольник ABCDEF — вписанный, причём  AB || DE  и  BC || EF.  Докажите, что  CD || EF.

ВверхВниз   Решение


Один из углов треугольника равен α. Найдите угол между прямыми, содержащими высоты, проведённые из вершин двух других углов.

ВверхВниз   Решение


Две стороны треугольника равны 2$ \sqrt{2}$ и 3, площадь треугольника равна 3. Найдите третью сторону.

ВверхВниз   Решение


Аналитик сделал прогноз изменения курса доллара на каждый из трёх ближайших месяцев: на сколько процентов (число, большее 0% и меньшее 100%) изменится курс за июль, на сколько – за август, и на сколько – за сентябрь. Оказалось, что про каждый месяц он верно предсказал, на сколько процентов изменится курс, но ошибся с направлением изменения (то есть если он предсказывал, что курс увеличится на $x\%$, то курс падал на $x\%$, и наоборот). При этом через три месяца курс совпал с прогнозом. В какую сторону в итоге изменился курс?

ВверхВниз   Решение


Четырёхугольник разрезан диагоналями на четыре треугольника. Докажите, что точки пересечения медиан этих треугольников образуют параллелограмм.

ВверхВниз   Решение


Через середину M стороны BC параллелограмма ABCD, площадь которого равна 1, и вершину A проведена прямая, пересекающая диагональ BD в точке O. Найдите площадь четырёхугольника OMCD.

ВверхВниз   Решение


На сторонах AB и AC треугольника ABC, площадь которого равна 36 см2, взяты соответственно точки M и K так, что AM/MB = 1/3, а AK/KC = 2/1. Найдите площадь треугольника AMK.

ВверхВниз   Решение


Разделим каждую сторону выпуклого четырёхугольника ABCD на три равные части и соединим отрезками соответствующие точки на противоположных сторонах (см. рис.). Докажите, что площадь "среднего" четырёхугольника в 9 раз меньше площади четырёхугольника ABCD.

ВверхВниз   Решение


Медианы AA1, BB1 и CC1 треугольника ABC пересекаются в точке M; P – произвольная точка. Прямая la проходит через точку A параллельно прямой PA1, прямые lb и lc определяются аналогично. Докажите, что
  а) прямые la, lb и lc пересекаются в одной точке (обозначим её через Q);
  б) точка M лежит на отрезке PQ, причём  PM : MQ = 1 : 2.

ВверхВниз   Решение


В выпуклом шестиугольнике ABCDEF противоположные стороны попарно параллельны  (AB || DE,  BC || EF,  CD || FA),  а также  AB = DE.
Докажите, что  BC = EF  и  CD = FA.

ВверхВниз   Решение


Коля и Женя договорились встретиться в метро в первом часу дня. Коля приходит на место встречи между полуднем и часом дня, ждёт 10 минут и уходит. Женя поступает точно так же.
  а) Какова вероятность того, что они встретятся?
  б) Как изменится вероятность встречи, если Женя решит прийти раньше половины первого, а Коля по-прежнему – между полуднем и часом?
  в) Как изменится вероятность встречи, если Женя решит прийти в произвольное время с 12.00 до 12.50, а Коля по-прежнему между 12.00 и 13.00?

ВверхВниз   Решение


Имелось 2016 чисел, ни одно из которых не равно нулю. Для каждой пары чисел записали их произведение.
Докажите, что среди выписанных произведений не менее трети положительны.

ВверхВниз   Решение


Пусть H - точка пересечения высот в треугольнике ABC. Докажите, что если провести прямые, симметричные прямым AH, BH, CH относительно биссектрис углов A, B, C, то эти прямые пересекутся в центре O описанной окружности треугольника ABC.

ВверхВниз   Решение


а) Дан кусок проволоки длиной 120 см. Можно ли, не ломая проволоки, изготовить каркас куба с ребром 10 см?
б) Какое наименьшее число раз придется ломать проволоку, чтобы всё же изготовить требуемый каркас?

ВверхВниз   Решение


За круглым столом сидят 4 гнома. Перед каждым стоит кружка с молоком. Один из гномов переливает ¼ своего молока соседу справа. Затем сосед справа делает то же самое. Затем то же самое делает следующий сосед справа и наконец четвёртый гном ¼ оказавшегося у него молока наливает первому. Во всех кружках вместе молока 2 л. Сколько молока было первоначально в кружках, если
  а) в конце у всех гномов молока оказалось поровну?
  б) в конце у всех гномов оказалось молока столько, сколько было в начале?

Вверх   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 122]      



Задача 61343

Темы:   [ Задачи на проценты и отношения ]
[ Системы линейных уравнений ]
[ Итерации ]
Сложность: 3+
Классы: 7,8,9,10

За круглым столом сидят 4 гнома. Перед каждым стоит кружка с молоком. Один из гномов переливает ¼ своего молока соседу справа. Затем сосед справа делает то же самое. Затем то же самое делает следующий сосед справа и наконец четвёртый гном ¼ оказавшегося у него молока наливает первому. Во всех кружках вместе молока 2 л. Сколько молока было первоначально в кружках, если
  а) в конце у всех гномов молока оказалось поровну?
  б) в конце у всех гномов оказалось молока столько, сколько было в начале?

Прислать комментарий     Решение

Задача 64307

Темы:   [ Задачи на проценты и отношения ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 3+
Классы: 6,7

Буратино закопал на Поле Чудес два слитка – золотой и серебряный. В те дни, когда погода хорошая, золотой слиток увеличивается на 30%, а серебряный – на 20%. А в те дни, когда погода плохая, золотой слиток уменьшается на 30%, а серебряный – на 20%. Через неделю оказалось, что один из слитков увеличился, а другой уменьшился. Сколько дней была хорошая погода?

Прислать комментарий     Решение

Задача 64312

Тема:   [ Задачи на проценты и отношения ]
Сложность: 3+
Классы: 6,7

Автор: Фольклор

Просыпаясь каждое утро в 8.30, истопник набивает печку углём до упора. При этом он кладёт ровно 5 кг угля. Каждый вечер, ложась спать (а ложится спать он также в одно и то же время), он опять набивает печку углём до упора и кладёт при этом ровно 7 кг угля.
В какое время истопник ложится спать?

Прислать комментарий     Решение

Задача 64381

Тема:   [ Задачи на проценты и отношения ]
Сложность: 3+
Классы: 6,7

Толстый выпуск газеты стоит 30 рублей, а тонкий – дешевле. Для пенсионеров установлена скидка на одно и то же количество процентов на все газеты, поэтому тонкий выпуск той же газеты они покупают за 15 рублей. Известно, что в любом случае газета стоит целое количество рублей. Сколько стоит тонкая газета без скидки и сколько стоит толстая газета для пенсионеров?

Прислать комментарий     Решение

Задача 64692

Темы:   [ Задачи на проценты и отношения ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 6,7

Автор: Акопян Э.

В начале года в 7 классе учились 25 человек. После того как туда пришли семеро новеньких, процентный состав отличников увеличился на 10 (если в начале года он был a%, то теперь –  (a + 10)%).  Сколько теперь отличников в классе?

Прислать комментарий     Решение

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 122]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .