Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Найти все числа, которые в 12 раз больше суммы своих цифр.

Вниз   Решение


Прямоугольники P и Q равновелики, но у P диагональ больше. Двумя копиями P можно накрыть Q. Докажите, что двумя копиями Q можно накрыть P.

ВверхВниз   Решение


а) Доказать, что для любых положительных чисел  x1, x2, ..., xk  (k > 3)  выполняется неравенство:

б) Доказать, что это неравенство ни для какого  k > 3  нельзя усилить, то есть доказать, что для каждого фиксированного k нельзя заменить двойку в правой части на большее число так, чтобы полученное неравенство было справедливо для любого набора из k положительных чисел.

ВверхВниз   Решение


Из полного 100-вершинного графа выкинули 98 рёбер. Доказать, что он остался связным.

ВверхВниз   Решение


В мешке изюма содержится 2001 изюминка общим весом 1001 г, причём ни одна изюминка не весит больше 1,002 г.
Докажите, что весь изюм можно разложить на две чаши весов так, чтобы они показали разность, не превосходящую 1 г.

ВверхВниз   Решение


Автор: Ратаров Д.

В трапецию $ABCD$ можно вписать окружность и около неё можно описать окружность. От трапеции остались: вершина $A$, центр вписанной окружности $I$, описанная окружность $\omega$ и ее центр $O$. Восстановите трапецию с помощью одной лишь линейки.

ВверхВниз   Решение


На конференции присутствуют 50 учёных, каждый из которых знаком по крайней мере с 25 участниками конференции.
Докажите, что найдутся четверо из них, которых можно усадить за круглый стол так, чтобы каждый сидел рядом со знакомыми ему людьми.

ВверхВниз   Решение


Доказать, что квадрат натурального числа не может оканчиваться на две нечётные цифры.

ВверхВниз   Решение


Три равные окружности касаются друг друга. Из произвольной точки окружности, касающейся внутренним образом этих окружностей, проведены касательные к ним. Доказать, что сумма длин двух касательных равна длине третьей.

ВверхВниз   Решение


Пусть R1, R2 и R3 – радиусы трёх окружностей, каждая из которых проходит через вершину треугольника и касается противолежащей стороны.
Докажите, что  1/R1 + 1/R2 + 1/R31/r,  где r – радиус вписанной окружности этого треугольника.

ВверхВниз   Решение


Какое слагаемое в разложении  (1 + )100  по формуле бинома Ньютона будет наибольшим?

ВверхВниз   Решение


Докажите, что     тогда и только тогда, когда β можно получить из α проделав несколько (может быть один раз или ни одного) операции вида

(k,  j, i)   ↔   (k – 1,  j + 1, i),     (k,  j, i)   ↔   (k – 1, j, i + 1),     (k, j, i)   ↔ (k,  j – 1, i + 1).

(Эти операции можно представлять себе как сбрасывание одного кирпича вниз на диаграмме Юнга. Про диаграммы Юнга смотри здесь.)

Вверх   Решение

Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 1008]      



Задача 60452

 [Рекуррентное соотношение для чисел Каталана]
Тема:   [ Числа Каталана ]
Сложность: 3+
Классы: 8,9,10,11

Докажите, что числа Каталана удовлетворяют рекуррентному соотношению   Cn = C0Cn–1 + C1Cn–2 + ... + Cn–1C0.
Определение чисел Каталана Cn смотри в справочнике.

Прислать комментарий     Решение

Задача 60671

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Простые числа и их свойства ]
Сложность: 3+
Классы: 8,9,10

Докажите, что если p – простое число, то   (a + b)pap – bp   делится на  p при любых целых a и b.

Прислать комментарий     Решение

Задача 61420

Темы:   [ Раскладки и разбиения ]
[ Отношение порядка ]
Сложность: 3+
Классы: 8,9,10,11

Докажите, что     тогда и только тогда, когда β можно получить из α проделав несколько (может быть один раз или ни одного) операции вида

(k,  j, i)   ↔   (k – 1,  j + 1, i),     (k,  j, i)   ↔   (k – 1, j, i + 1),     (k, j, i)   ↔ (k,  j – 1, i + 1).

(Эти операции можно представлять себе как сбрасывание одного кирпича вниз на диаграмме Юнга. Про диаграммы Юнга смотри здесь.)

Прислать комментарий     Решение

Задача 61507

 [Производящие функции многочленов Чебышева]
Темы:   [ Производящие функции ]
[ Многочлены Чебышева ]
[ Специальные многочлены (прочее) ]
Сложность: 3+
Классы: 10,11

Найдите производящие функции последовательностей многочленов Чебышева первого и второго рода:

Определения многочленов Чебышева можно найти в справочнике.

Прислать комментарий     Решение

Задача 61525

Темы:   [ Раскладки и разбиения ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 3+
Классы: 8,9,10,11

Обозначим через Pk,l(n) количество разбиений числа n на не более чем k слагаемых, каждое из которых не превосходит l.
Докажите равенства:
  а)  Pk,l(n) – Pk,l–1(n) = Pk–1,l(n – l);
  б)  Pk,l(n) – Pk–1,l(n) = Pk,l–1(nk);
  в)  Pk,l(n) = Pl,k(n);
  г)  Pk,l(n) = Pk,l(kl – n).

Прислать комментарий     Решение

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 1008]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .