ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Белухов Н.

Дан треугольник ABC и такая точка F, что  ∠AFB = ∠BFC = ∠CFA.  Прямая, проходящая через F и перпендикулярная BC, пересекает медиану, проведённую из вершины A, в точке A1. Точки B1 и C1 определяются аналогично. Докажите, что A1, B1 и C1 являются тремя вершинами правильного шестиугольника, три другие вершины которого лежат на сторонах треугольника ABC.

   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 88]      



Задача 108039

Темы:   [ Перегруппировка площадей ]
[ Шестиугольники ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9

В шестиугольнике ABCDEF, вписанном в окружность,  AB = BC,  CD = DE,  EF = FA.
Докажите, что площадь треугольника BDF равна половине площади шестиугольника.

Прислать комментарий     Решение

Задача 111812

Темы:   [ Свойства симметрий и осей симметрии ]
[ Шестиугольники ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Ромбы. Признаки и свойства ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 4-
Классы: 9

Дан выпуклый шестиугольник P1P2P3P4P5P6, все стороны которого равны. Каждую его вершину отразили симметрично относительно прямой, проходящей через две соседние вершины. Полученные точки обозначили через Q1, Q2, Q3, Q4, Q5 и Q6 соответственно. Докажите, что треугольники Q1Q3Q5 и Q2Q4Q6 равны.

Прислать комментарий     Решение

Задача 98030

Темы:   [ Разрезания на параллелограммы ]
[ Шестиугольники ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4
Классы: 8,9,10

Правильный шестиугольник разрезан на N равновеликих параллелограммов. Доказать, что N делится на 3.

Прислать комментарий     Решение

Задача 109040

Темы:   [ Вписанные и описанные многоугольники ]
[ Шестиугольники ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4+
Классы: 8,9

Доказать, что если у шестиугольника противоположные стороны параллельны и диагонали, соединяющие противоположные вершины, равны, то вокруг него можно описать окружность.
Прислать комментарий     Решение


Задача 64396

Темы:   [ Точка Торричелли ]
[ Шестиугольники ]
[ Правильные многоугольники ]
[ Подерный (педальный) треугольник ]
Сложность: 5
Классы: 8,9,10

Автор: Белухов Н.

Дан треугольник ABC и такая точка F, что  ∠AFB = ∠BFC = ∠CFA.  Прямая, проходящая через F и перпендикулярная BC, пересекает медиану, проведённую из вершины A, в точке A1. Точки B1 и C1 определяются аналогично. Докажите, что A1, B1 и C1 являются тремя вершинами правильного шестиугольника, три другие вершины которого лежат на сторонах треугольника ABC.

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 88]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .