ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Среди всех таких чисел n, что любой выпуклый
100-угольник можно представить в виде пересечения (т. е.
общей части) n треугольников, найдите наименьшее.
На плоскости расположено 20 точек, никакие три из которых не лежат на одной
прямой, из них 10 синих и 10 красных.
Постройте треугольник по стороне, противолежащему углу и сумме двух других сторон.
Назовём натуральное число хорошим, если в его десятичной записи встречаются подряд цифры 1, 9, Постарайтесь найти возможно меньшее Около окружности радиуса R описана равнобедренная трапеция ABCD. E и K – точки касания этой окружности с боковыми сторонами трапеции. Угол между основанием AB и боковой стороной AD трапеции равен 60°. Докажите, что EK || AB и найдите площадь трапеции ABKE. В прямоугольном треугольнике ABC с равными катетами AC и BC на
стороне AC как на диаметре построена окружность, пересекающая
сторону AB в точке M. Найдите расстояние от вершины B до центра
этой окружности, если
BM =
Пусть c — наибольшая сторона треугольника со сторонами a, b, c. Докажите, что если a2 + b2 > c2, то треугольник остроугольный, а если a2 + b2 < c2, — тупоугольный.
Решите уравнение 2 sin πx/2 – 2 cos πx = x5 + 10x – 54. Равнобедренные треугольники ABC (AB = BC) и A1B1C1 (A1B1 = B1C1) подобны и AB : A1B1 = 2 : 1. Вершины A1, B1 и C1 расположены соответственно на сторонах CA, AB и BC, причём A1B1 ⊥ AC. Найдите угол B. В равнобедренной трапеции ABCD основания AD = 12, BC = 6, высота равна 4. Диагональ AC делит угол BAD трапеции на две части. Какая из них больше? В окружность вписан 101-угольник. Из каждой его вершины опустили перпендикуляр на прямую, содержащую противоположную сторону. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 51]
В окружность вписан 101-угольник. Из каждой его вершины опустили перпендикуляр на прямую, содержащую противоположную сторону.
Даны две окружности $\omega_1$ и $\omega_2$, пересекающиеся в точке $A$, и прямая $a$. Пусть $BC$ – произвольная хорда окружности $\omega_2$, параллельная $a$, а $E$ и $F$ – вторые точки пересечения прямых $AB$ и $AC$ с $\omega_1$. Найдите геометрическое место точек пересечения прямых $BC$ и $EF$.
Дана треугольная пирамида $SABC$, основание которой – равносторонний треугольник $ABC$, а все плоские углы при вершине $S$ равны $\alpha$. При каком наименьшем $\alpha$ можно утверждать, что эта пирамида правильная?
На плоскости даны три параллельные прямые.
Точка P лежит на описанной окружности треугольника ABC. Построим треугольник A1B1C1, стороны которого параллельны отрезкам PA, PB, PC
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 51]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке