ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Вписанный угол
>>
Углы, опирающиеся на равные дуги и равные хорды
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан правильный треугольник ABC, площадь которого равна 1, и точка P на его описанной окружности. Прямые AP, BP, CP пересекают соответственно прямые BC, CA, AB в точках A', B', C'. Найдите площадь треугольника A'B'C'. Решение |
Страница: << 87 88 89 90 91 92 93 >> [Всего задач: 499]
Дан правильный треугольник ABC, площадь которого равна 1, и точка P на его описанной окружности. Прямые AP, BP, CP пересекают соответственно прямые BC, CA, AB в точках A', B', C'. Найдите площадь треугольника A'B'C'.
Дан выпуклый четырёхугольник ABCD, в котором ∠DAB = 90°. Пусть M – середина стороны BC. Оказалось. что ∠ADC = ∠BAM.
Четырёхугольник ABCD вписан в окружность Ω с центром O, причём O не лежит на диагоналях четырёхугольника. Описанная окружность Ω1 треугольника AOC проходит через середину диагонали BD. Докажите, что описанная окружность Ω2 треугольника BOD проходит через середину диагонали AC.
Страница: << 87 88 89 90 91 92 93 >> [Всего задач: 499] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|