Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

  а) В ведро налили 12 литров молока. Пользуясь лишь сосудами в 5 и 7 л, разделите молоко на две равные части.
  б) Решите общую задачу: при каких a и b можно разделить пополам  a + b  литров молока, пользуясь лишь сосудами в a литров, b литров и  a + b  литров?
За одно переливание из одного сосуда в другой можно вылить всё, что там есть, или долить второй сосуд до верха.

Вниз   Решение


На боковых сторонах AB и BC равнобедренного треугольника ABC взяты соответственно точки M и N так, что  BM = CN.
Докажите, что середина отрезка MN лежит на средней линии треугольника BC, параллельной его основанию.

ВверхВниз   Решение


Автор: Мухин Д.Г.

Пусть C – одна из точек пересечения окружностей α и β. Касательная в этой точке к α пересекает β в точке B, а касательная в C к β пересекает α в точке A, причём A и B отличны от C, и угол ACB тупой. Прямая AB вторично пересекает α и β в точках N и M соответственно. Докажите, что  2MN < AB.

ВверхВниз   Решение


a, b, c – целые числа; a и b отличны от нуля.
Докажите, что уравнение  ax + by = c  имеет решения в целых числах тогда и только тогда, когда c делится на  d = НОД(a, b).

ВверхВниз   Решение


Докажите равенство  

ВверхВниз   Решение


Угол при вершине D трапеции ABCD с основаниями AD и BC равен 60o. Найдите диагонали трапеции, если AD = 10, BC = 3 и CD = 4.

ВверхВниз   Решение


Дана равнобедренная трапеция ABCD. Известно, что  AD = 10,  BC = 2,  AB = CD = 5.  Биссектриса угла BAD пересекает продолжение основания BC
в точке K. Найдите биссектрису угла ABK в треугольнике ABK.

ВверхВниз   Решение


Какое наименьшее число соединений требуется для организации проводной сети связи из 10 узлов, чтобы при выходе из строя любых двух узлов связи сохранялась возможность передачи информации между любыми двумя оставшимися (хотя бы по цепочке через другие узлы)?

ВверхВниз   Решение


Сторона ромба ABCD равна 5. В этот ромб вписана окружность радиуса 2,4.
Найдите расстояние между точками, в которых эта окружность касается сторон AB и BC, если диагональ AC меньше диагонали BD.

ВверхВниз   Решение


Вершины параллелограмма A1B1C1D1 лежат на сторонах параллелограмма ABCD (точка A1 лежит на стороне AB, точка B1 – на стороне BC и т.д.).
Докажите, что центры обоих параллелограммов совпадают.

ВверхВниз   Решение


На доске написали 100 попарно различных натуральных чисел a1, a2, ..., a100. Затем под каждым числом ai написали число bi, полученное прибавлением к ai наибольшего общего делителя остальных 99 исходных чисел. Какое наименьшее количество попарно различных чисел может быть среди b1, b2, ..., b100?

ВверхВниз   Решение


На плоскости даны n  (n > 2)  точек, никакие три из которых не лежат на одной прямой. Сколькими различными способами это множество точек можно разбить на два непустых подмножества так, чтобы выпуклые оболочки этих подмножеств не пересекались?

Вверх   Решение

Задачи

Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 489]      



Задача 116752

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Углы между прямыми и плоскостями ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 4
Классы: 10,11

Внутри выпуклого многогранника выбрана точка P и несколько прямых  l1, ..., ln,  проходящих через P и не лежащих в одной плоскости. Каждой грани многогранника поставим в соответствие ту из прямых  l1, ..., ln,  которая образует наибольший угол с плоскостью этой грани (если таких прямых несколько, выберем любую из них). Докажите, что найдётся грань, которая пересекается с соответствующей ей прямой.

Прислать комментарий     Решение

Задача 64926

Темы:   [ Системы точек ]
[ Разбиения на пары и группы; биекции ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Проективная геометрия (прочее) ]
Сложность: 4+
Классы: 10,11

На плоскости даны n  (n > 2)  точек, никакие три из которых не лежат на одной прямой. Сколькими различными способами это множество точек можно разбить на два непустых подмножества так, чтобы выпуклые оболочки этих подмножеств не пересекались?

Прислать комментарий     Решение

Задача 73664

Темы:   [ Уравнения в целых числах ]
[ Алгоритм Евклида ]
[ Принцип крайнего ]
Сложность: 4+
Классы: 8,9,10

  а) В ведро налили 12 литров молока. Пользуясь лишь сосудами в 5 и 7 л, разделите молоко на две равные части.
  б) Решите общую задачу: при каких a и b можно разделить пополам  a + b  литров молока, пользуясь лишь сосудами в a литров, b литров и  a + b  литров?
За одно переливание из одного сосуда в другой можно вылить всё, что там есть, или долить второй сосуд до верха.

Прислать комментарий     Решение

Задача 73771

Темы:   [ Десятичная система счисления ]
[ Шахматные доски и шахматные фигуры ]
[ Принцип крайнего (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Геометрические интерпретации в алгебре ]
Сложность: 4+
Классы: 8,9,10

а) Имеется 51 двузначное число. Докажите, что из этих чисел можно выбрать по крайней мере 6 чисел так, чтобы никакие два из выбранных чисел ни в одном разряде не имели одинаковой цифры.

б) Даны натуральные числа k и n, причём  1 < k < n.  Для какого наименьшего m верно следующее утверждение: при любой расстановке m ладей на доске размером n×n клеток можно выбрать k ладей из этих m так, чтобы никакие две из этих выбранных ладей не били друг друга?

Прислать комментарий     Решение

Задача 79458

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Индукция (прочее) ]
[ Принцип крайнего (прочее) ]
[ Неравенство Коши ]
Сложность: 4+
Классы: 9,10,11

По кругу расставлено не менее четырёх неотрицательных чисел, в сумме равных единице.
Докажите, что сумма всех попарных произведений соседних чисел не больше ¼.

Прислать комментарий     Решение

Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 489]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .