Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 21 задача
Версия для печати
Убрать все задачи

Треугольники ACC1 и BCC1 равны. Их вершины A и B лежат по разные стороны от прямой CC1.
Докажите, что треугольники ABC и ABC1 – равнобедренные.

Вниз   Решение


На окружности отмечено 100 точек. Может ли при этом оказаться ровно 1000 прямоугольных треугольников, все вершины которых — отмеченные точки?

ВверхВниз   Решение


Можно ли разбить множество целых чисел на три подмножества так, чтобы для любого целого значения n числа n, n - 50, n + 1987 принадлежали трём разным подмножествам?

ВверхВниз   Решение


Докажите, что треугольники abc и a'b'c' собственно подобны, тогда и только тогда, когда

a'(b - c) + b'(c - a) + c'(a - b) = 0.


ВверхВниз   Решение


Пусть A — произвольный угол, B и C — острые углы. Всегда ли существует такой угол X, что

sin X = $\displaystyle {\frac{\sin B\sin C}{1-\cos A\cos B\cos C}}$?

(Из `` Воображаемой геометрии'' Н. И. Лобачевского).

ВверхВниз   Решение


На одной из медиан треугольника $ABC$ нашлась такая точка $P$, что $\angle PAB=\angle PBC=\angle PCA$. Докажите, что на другой медиане найдется такая точка $Q$, что $\angle QBA=\angle QCB=\angle QAC$.

ВверхВниз   Решение


Автор: Колосов В.

Пусть x, y, z – любые числа из интервала  (0, π/2).  Докажите неравенство  

ВверхВниз   Решение


На плоскости даны три попарно пересекающиеся окружности. Через точки пересечения каждых двух из них проведена прямая.
Докажите, что эти три прямые пересекаются в одной точке или параллельны.

ВверхВниз   Решение


Назовём непустое (конечное или бесконечное) множество A, состоящее из действительных чисел, полным, если для любых действительных a и b (не обязательно различных и не обязательно лежащих в A), при которых  a + b  лежит в A, число ab также лежит в A. Найдите все полные множества действительных чисел.

ВверхВниз   Решение


С помощью одного циркуля постройте окружность, проходящую через три данные точки.

ВверхВниз   Решение


Докажите, что прямая, проходящая через точки a1 и a2, задаётся уравнением

z($\displaystyle \bar{a}_{1}^{}$ - $\displaystyle \bar{a}_{2}^{}$) - $\displaystyle \bar{z}$(a1 - a2) + (a1$\displaystyle \bar{a}_{2}^{}$ - $\displaystyle \bar{a}_{1}^{}$a2) = 0.


ВверхВниз   Решение


Пусть $ \angle$A < $ \angle$B < $ \angle$C < 90o. Докажите, что центр вписанной окружности треугольника ABC лежит внутри треугольника BOH, где O — центр описанной окружности, H — точка пересечения высот.

ВверхВниз   Решение


Назовем натуральное число "изумительным", если оно имеет вид ab + ba (где a и b - натуральные числа). Например, число 57 - изумительное, так как 57 = 25 + 52. Является ли изумительным число 2006?

ВверхВниз   Решение


С помощью одного циркуля постройте окружность, в которую переходит данная прямая AB при инверсии относительно данной окружности с данным центром O.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник по углу, высоте и биссектрисе, проведённым из вершины этого угла.

ВверхВниз   Решение


Две окружности с центрами O1 и O2 пересекаются в точках A и B. Через точку A проведена прямая, пересекающая первую окружность в точке M1, а вторую в точке M2. Докажите, что  $ \angle$BO1M1 = $ \angle$BO2M2.

ВверхВниз   Решение


Пусть a и b — комплексные числа, лежащие на окружности с центром в нуле, u — точка пересечения касательных к этой окружности в точках a и b. Докажите, что u = 2ab/(a + b).

ВверхВниз   Решение


Пусть  f(x) – многочлен степени m. Докажите, что если  m < n,  то  Δnf(x) = 0.  Чему равна величина Δmf(x)?

ВверхВниз   Решение


В день рождения дяди Федора почтальон Печкин хочет выяснить, сколько тому лет. Шарик говорит, что дяде Федору больше 11 лет, а кот Матроскин утверждает, что больше 10 лет. Сколько лет дяде Федору, если известно, что ровно один из них ошибся? Ответ обоснуйте.

ВверхВниз   Решение


Автор: Власова Н.

По кругу стоят n мальчиков и n девочек. Назовём пару из мальчика и девочки хорошей, если на одной из дуг между ними стоит поровну мальчиков и девочек (в частности, стоящие рядом мальчик и девочка образуют хорошую пару). Оказалось, что есть девочка, которая участвует ровно в 10 хороших парах. Докажите, что есть и мальчик, который участвует ровно в 10 хороших парах.

ВверхВниз   Решение


Не используя калькулятора, определите знак числа  (cos(cos 1) – cos 1)(sin(sin 1) – sin 1).

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 37]      



Задача 64960

Тема:   [ Тригонометрические неравенства ]
Сложность: 3
Классы: 10,11

Не используя калькулятора, определите знак числа  (cos(cos 1) – cos 1)(sin(sin 1) – sin 1).

Прислать комментарий     Решение

Задача 65997

Темы:   [ Тригонометрические неравенства ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 10,11

Решите в целых числах неравенство:  x² < 3 – 2cos πx.

Прислать комментарий     Решение

Задача 77905

Тема:   [ Тригонометрические неравенства ]
Сложность: 3
Классы: 10,11

Пусть A — произвольный угол, B и C — острые углы. Всегда ли существует такой угол X, что

sin X = $\displaystyle {\frac{\sin B\sin C}{1-\cos A\cos B\cos C}}$?

(Из `` Воображаемой геометрии'' Н. И. Лобачевского).
Прислать комментарий     Решение

Задача 65525

Темы:   [ Тригонометрические неравенства ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 10,11

Решите неравенство   .

Прислать комментарий     Решение

Задача 98588

Темы:   [ Тригонометрические неравенства ]
[ Классические неравенства (прочее) ]
[ Монотонность, ограниченность ]
Сложность: 3+
Классы: 10,11

Автор: Колосов В.

Пусть x, y, z – любые числа из интервала  (0, π/2).  Докажите неравенство  

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 37]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .