ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть n > 1 – натуральное число. Выпишем дроби 1/n, 2/n, ..., n–1/n и приведём каждую к несократимому виду; сумму числителей полученных дробей обозначим через f(n). При каких натуральных n > 1 числа f(n) и f(2015n) имеют разную чётность? Решение |
Страница: << 184 185 186 187 188 189 190 >> [Всего задач: 1221]
Решите в целых числах уравнение (x² – y²)² = 16y + 1.
Пусть n > 1 – натуральное число. Выпишем дроби 1/n, 2/n, ..., n–1/n и приведём каждую к несократимому виду; сумму числителей полученных дробей обозначим через f(n). При каких натуральных n > 1 числа f(n) и f(2015n) имеют разную чётность?
В выпуклом n-угольнике провели несколько диагоналей так, что ни в какой точке внутри многоугольника не пересеклись три или более из них. В результате многоугольник разбился на треугольники. Каково наибольшее возможное число треугольников?
Капитан Врунгель в своей каюте разложил перетасованную колоду из 52 карт по кругу, оставив одно место свободным. Матрос Фукс с палубы, не отходя от штурвала и не зная начальной раскладки, называет карту. Если эта карта лежит рядом со свободным местом, Врунгель её туда передвигает, не сообщая Фуксу. Иначе ничего не происходит. Потом Фукс называет еще одну карту, и так сколько угодно раз, пока он не скажет “стоп”. Может ли Фукс добиться того, чтобы после слова "стоп"
Если в каждой вершине выпуклого многогранника сходятся не менее чем четыре ребра, то хотя бы одна из его граней – треугольник.
Страница: << 184 185 186 187 188 189 190 >> [Всего задач: 1221] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|