|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В треугольнике ABC точка D – середина стороны AB . Можно ли так расположить точки E и F на сторонах AC и BC соответственно, чтобы площадь треугольника DEF оказалась больше суммы площадей треугольников AED и BFD ? Ножки циркуля находятся в узлах бесконечного листа клетчатой бумаги, клетки которого – квадраты со стороной 1. Разрешается, не меняя раствора циркуля, поворотом его вокруг одной из ножек перемещать вторую ножку в другой узел на листе. Можно ли за несколько таких шагов поменять ножки циркуля местами? Дана равнобокая трапеция ABCD с основаниями BC и AD. Окружность ω проходит через вершины B и C и вторично пересекает сторону AB и диагональ BD в точках X и Y соответственно. Касательная, проведённая к окружности ω в точке C, пересекает луч AD в точке Z. Докажите, что точки X, Y и Z лежат на одной прямой. На стороне AB четырёхугольника ABCD взяты точки A1 и B1, а на стороне CD – точки C1 и D1, причём AA1 = BB1 = pAB и CC1 = DD1 = pCD, где Диагонали четырёхугольника $ABCD$ пересекаются в точке $P$, причём $S^2_{\Delta ABP} + S^2_{\Delta CDP} = S^2_{\Delta BCP} + S^2_{\Delta ADP}$. Докажите, что $P$ — середина одной из диагоналей. В основании четырёхугольной пирамиды SABCD лежит ромб ABCD с острым углом при вершине A . Высота ромба равна 4, точка пересечения его диагоналей является ортогональной проекцией вершины S на плоскость основания. Сфера радиуса 2 касается плоскостей всех граней пирамиды. Найдите объём пирамиды, если расстояние от центра сферы до прямой AC равно Дана треугольная пирамида ABCD . Скрещивающиеся рёбра AC и BD этой пирамиды перпендикулярны. Также перпендикулярны скрещивающиеся ребра AD и BC , а AB = CD . Все рёбра этой пирамиды касаются шара радиуса r . Найдите площадь грани ABC . Высота пирамиды ABCD , опущенная из вершины D , проходит через точку пересечения высот треугольника ABC . Кроме того, известно, что DB = b , DC = c , На сторонах АВ, ВС и СА равностороннего треугольника АВС выбраны точки D, E и F соответственно так, что DE || АC, DF || BС. |
Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 355]
Митя собирается согнуть квадратный лист бумаги ABCD. Митя называет сгиб красивым, если сторона AB пересекает сторону CD и четыре получившихся прямоугольных треугольника равны. Перед этим Ваня выбирает на листе случайную точку F. Найдите вероятность того, что Митя сможет сделать красивый сгиб, проходящий через точку F.
На сторонах АВ, ВС и СА равностороннего треугольника АВС выбраны точки D, E и F соответственно так, что DE || АC, DF || BС.
В каждой вершине куба сидело по мухе. Потом все мухи разом взлетели и сели по одной в каждую вершину в каком-то другом порядке.
В остроугольном треугольнике MKN проведена биссектриса KL. Точка X на стороне MK такова, что KX = KN. Докажите, что прямые KO и XL перпендикулярны (O – центр описанной окружности треугольника MKN).
Квадраты ABCD и BEFG расположены так, как показано на рисунке. Оказалось, что точки A, G и E лежат на одной прямой.
Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 355] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|