Страница:
<< 62 63 64 65
66 67 68 >> [Всего задач: 499]
|
|
Сложность: 4 Классы: 9,10,11
|
Дан треугольник ABC, O – центр его описанной окружности. Проекции точек D и X на стороны треугольника лежат на прямых l и L, причём
l || XO. Докажите, что прямая L образует равные углы с прямыми AB и CD.
В остроугольном треугольнике ABC углы B и C больше 60°. Точки P, Q на сторонах AB, AC таковы, что A, P, Q и ортоцентр треугольника H лежат на одной окружности; K – середина отрезка PQ. Докажите, что ∠BKC > 90°.
|
|
Сложность: 4 Классы: 9,10,11
|
Биссектриса угла $A$ треугольника $ABC$ ($AB>AC$) пересекает описанную окружность в точке $P$. Перпендикуляр к $AC$ в точке $C$ пересекает биссектрису угла $A$ в точке $K$. Окружность с центром в точке $P$ и радиусом $PK$ пересекает меньшую дугу $PA$ описанной окружности в точке $D$. Докажите, что в четырехугольник $ABDC$ можно вписать окружность.
|
|
Сложность: 4 Классы: 8,9,10
|
Докажите, что в правильном двенадцатиугольнике A1A2...A12 диагонали A1A5, A2A6, A3A8 и A4A11 пересекаются в одной точке.
|
|
Сложность: 4 Классы: 8,9,10
|
В окружности с центром O проведены три равные хорды AB, CD и PQ (см. рисунок). Докажите, что MOK равен половине угла BLD.
Страница:
<< 62 63 64 65
66 67 68 >> [Всего задач: 499]