ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи У прямого кругового конуса длина образующей равна 5, а диаметр равен 8.
Найдите наибольшую площадь треугольного сечения, которая может получиться при пересечении конуса плоскостью. Высота прямоугольного треугольника, проведённая из вершины прямого угла, делит гипотенузу на отрезки, равные a и b. Найдите катеты. Докажите, что при инверсии с центром O окружность, проходящая
через O, переходит в прямую, а окружность, не проходящая через O, — в окружность.
Пусть точки $P$ и $Q$ изогонально сопряжены относительно треугольника $ABC$. Точка $A_1$, лежащая на дуге $BC$ описанной около треугольника окружности $\omega$, удовлетворяет условию $\angle BA_1P=\angle CA_1Q$. Точки $B_1$ и $C_1$ определены аналогично. Докажите, что прямые $AA_1$, $BB_1$ и $CC_1$ пересекаются в одной точке. |
Страница: << 1 2 3 4 >> [Всего задач: 17]
Точки A, B, C и D лежат на окружности с центром O.
Прямые AB и CD пересекаются в точке E, а описанные окружности
треугольников AEC и BED пересекаются в точках E и P. Докажите,
что:
Пусть точки $P$ и $Q$ изогонально сопряжены относительно треугольника $ABC$. Точка $A_1$, лежащая на дуге $BC$ описанной около треугольника окружности $\omega$, удовлетворяет условию $\angle BA_1P=\angle CA_1Q$. Точки $B_1$ и $C_1$ определены аналогично. Докажите, что прямые $AA_1$, $BB_1$ и $CC_1$ пересекаются в одной точке.
В выпуклом четырёхугольнике ABCD точки P и Q – середины диагоналей AC и BD соответственно. Прямая PQ пересекает стороны AB и CD в точках N и M соответственно. Докажите, что описанные окружности треугольников ANP , BNQ , CMP и DMQ пересекаются в одной точке.
Точки A' , B' и C' "– середины сторон BC ,
CA и AB треугольника ABC соответственно, а BH "– его
высота. Докажите, что если описанные около треугольников AHC' и
CHA' окружности проходят через точку M , отличную от H , то
Даны четыре прямые. Докажите, что проекции точки
Микеля на эти прямые лежат на одной прямой.
Страница: << 1 2 3 4 >> [Всего задач: 17]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке