Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Найти все числа, которые в 12 раз больше суммы своих цифр.

Вниз   Решение


Прямоугольники P и Q равновелики, но у P диагональ больше. Двумя копиями P можно накрыть Q. Докажите, что двумя копиями Q можно накрыть P.

ВверхВниз   Решение


а) Доказать, что для любых положительных чисел  x1, x2, ..., xk  (k > 3)  выполняется неравенство:

б) Доказать, что это неравенство ни для какого  k > 3  нельзя усилить, то есть доказать, что для каждого фиксированного k нельзя заменить двойку в правой части на большее число так, чтобы полученное неравенство было справедливо для любого набора из k положительных чисел.

ВверхВниз   Решение


Из полного 100-вершинного графа выкинули 98 рёбер. Доказать, что он остался связным.

ВверхВниз   Решение


В мешке изюма содержится 2001 изюминка общим весом 1001 г, причём ни одна изюминка не весит больше 1,002 г.
Докажите, что весь изюм можно разложить на две чаши весов так, чтобы они показали разность, не превосходящую 1 г.

ВверхВниз   Решение


Автор: Ратаров Д.

В трапецию $ABCD$ можно вписать окружность и около неё можно описать окружность. От трапеции остались: вершина $A$, центр вписанной окружности $I$, описанная окружность $\omega$ и ее центр $O$. Восстановите трапецию с помощью одной лишь линейки.

Вверх   Решение

Задачи

Страница: << 87 88 89 90 91 92 93 >> [Всего задач: 487]      



Задача 64880

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Построения одной линейкой ]
Сложность: 4
Классы: 10,11

Дан прямоугольный треугольник с гипотенузой AC, проведена биссектриса треугольника BD; отмечены середины E и F дуг BD окружностей, описанных около треугольников ADB и CDB соответственно (сами окружности не проведены). Постройте одной линейкой центры окружностей.

Прислать комментарий     Решение

Задача 65938

Темы:   [ Вписанные и описанные окружности ]
[ Построения одной линейкой ]
[ Окружность Аполлония ]
[ Теоремы Чевы и Менелая ]
Сложность: 4
Классы: 9,10

В треугольник АВС вписана окружность и отмечен её центр I и точки касания P, Q, R со сторонами ВС, СА, АВ соответственно. Одной линейкой постройте точку К, в которой окружность, проходящая через вершины В и С, касается (внутренним образом) вписанной окружности.
Прислать комментарий     Решение


Задача 66957

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Четырехугольники (построения) ]
[ Построения одной линейкой ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4
Классы: 9,10,11

Автор: Ратаров Д.

В трапецию $ABCD$ можно вписать окружность и около неё можно описать окружность. От трапеции остались: вершина $A$, центр вписанной окружности $I$, описанная окружность $\omega$ и ее центр $O$. Восстановите трапецию с помощью одной лишь линейки.
Прислать комментарий     Решение


Задача 67340

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Описанные четырехугольники ]
[ Четырехугольники (построения) ]
Сложность: 4
Классы: 8,9,10,11

Постройте вписанно-описанный четырёхугольник по двум противоположным вершинам и центру вписанной окружности.
Прислать комментарий     Решение


Задача 55635

Темы:   [ Симметрия помогает решить задачу ]
[ Симметрия и построения ]
[ Четырехугольники (построения) ]
Сложность: 4
Классы: 8,9

Постройте четырёхугольник ABCD по четырём сторонам, если известно, что его диагональ AC является биссектрисой угла A.

Прислать комментарий     Решение


Страница: << 87 88 89 90 91 92 93 >> [Всего задач: 487]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .