ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Прямая $\ell$, параллельная стороне $BC$ треугольника $ABC$, касается его вписанной окружности и пересекает его описанную окружность в точках $D$ и $E$. Пусть $I$ – центр вписанной окружности треугольника $ABC$. Докажите, что $AI^2 = AD\cdot AE$. Решение |
Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 1275]
Касательная, проведенная через вершину C вписанного в окружность треугольника ABC, пересекает продолжение стороны AB за вершину B в точке D. Известно, что радиус окружности равен 2, AC = и CDA + ACB = 2BAC. Найдите секущую AD.
Касательная, проведенная через вершину M вписанного в окружность треугольника KLM, пересекает продолжение стороны KL за вершину L в точке N. Известно, что радиус окружности равен 2, KM = и MNK + KML = 4LKM. Найдите касательную MN.
Продолжения высот остроугольного треугольника ABC пересекают описанную окружность в точках A1, B1 и C1 соответственно. Докажите, что биссектрисы треугольника A1B1C1 лежат на прямых AA1, BB1, CC1.
Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 1275] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|