Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Можно ли n раз рассадить  2n + 1  человека за круглым столом так, чтобы никакие двое не сидели рядом более одного раза, если  а)  n = 5;  б)  n = 10?

Вниз   Решение


M и N — точки пересечения двух окружностей с центрами O1 и O2. Прямая O1M пересекает 1-ю окружность в точке A1, а 2-ю в точке A2. Прямая O2M пересекает 1-ю окружность в точке B1, а 2-ю в точке B2. Доказать, что прямые A1B1, A2B2 и MN пересекаются в одной точке.

ВверхВниз   Решение


Пусть $AL$ — биссектриса треугольника $ABC$, точка $D$ — ее середина, $E$ — проекция $D$ на $AB$. Известно, что $AC = 3 AE$. Докажите, что треугольник $CEL$ равнобедренный.

ВверхВниз   Решение


В алфавите племени Мумбу-Юмбу есть лишь две буквы A и Б. Два разных слова обозначают одно и то же понятие, если одно из них может быть получено из другого с помощью следующих операций:
  1) в любом месте слова комбинацию букв АБА можно заменить на БАБ;
  2) из любого места можно выкидывать две одинаковые буквы, идущие подряд.
  а) Может ли дикарь племени сосчитать все пальцы на своей руке?
  б) А дни недели?

ВверхВниз   Решение


В трапеции ABCD одно основание в два раза больше другого. Меньшее основание равно c. Диагонали трапеции пересекаются под прямым углом, а отношение боковых сторон равно k. Найдите боковые стороны трапеции.

ВверхВниз   Решение


Пусть AE и CD – биссектрисы треугольника ABC,  ∠BED = 2∠AED  и  ∠BDE = 2∠EDC.  Докажите, что треугольник ABC – равнобедренный.

ВверхВниз   Решение


Слово – любая конечная последовательность букв русского алфавита. Выясните, сколько различных слов можно составить из слов
  а) ВЕКТОР;
  б) ЛИНИЯ;
  в) ПАРАБОЛА;
  г) БИССЕКТРИСА;
  д) МАТЕМАТИКА.

ВверхВниз   Решение


m и n – натуральные числа,  m < n.  Докажите, что  

ВверхВниз   Решение


Найдите площадь равнобедренного треугольника, если высота, опущенная на основание, равна 10, а высота, опущенная на боковую сторону, равна 12.

ВверхВниз   Решение


Автор: Белухов Н.

Даны выпуклый многоугольник $M$ и простое число $p$. Оказалось, что существует ровно $p$ способов разбить $M$ на равносторонние треугольники со стороной 1 и квадраты со стороной 1.
Докажите, что длина одной из сторон многоугольника $M$ равна  $p$ – 1.

ВверхВниз   Решение


В окружности радиуса R проведены хорда AB и диаметр AC. Хорда PQ, перпендикулярная диаметру AC, пересекает хорду AB в точке M. Известно, что AB = a, PM : MQ = 3. Найдите AM.

ВверхВниз   Решение


Точки A, B, C, D лежат на одной прямой. Докажите, что если (ABCD) = 1, то либо A = B, либо C = D.

ВверхВниз   Решение


Раскрашенный в чёрный и белый цвета кубик с гранью в одну клетку поставили на одну из клеток шахматной доски и прокатили по ней так, что кубик побывал на каждой клетке ровно по одному разу. Можно ли так раскрасить кубик и так прокатить его по доске, чтобы каждый раз цвета клетки и соприкоснувшейся с ней грани совпадали?

ВверхВниз   Решение


Прямая $\ell$, параллельная стороне $BC$ треугольника $ABC$, касается его вписанной окружности и пересекает его описанную окружность в точках $D$ и $E$. Пусть $I$ – центр вписанной окружности треугольника $ABC$. Докажите, что $AI^2 = AD\cdot AE$.

Вверх   Решение

Задачи

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 1282]      



Задача 55549

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

Диаметр AB окружности равен 1. На нем отложен отрезок AC, равный a. Проведена также хорда AD, равная b. Из точки C восстановлен перпендикуляр к AB, пересекающий хорду AD в точке E, а из точки D опущен перпендикуляр DF на AB (см. рисунок). Оказалось, что AE = AF. Докажите, что a = b3.

Прислать комментарий     Решение


Задача 66814

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Четыре точки, лежащие на одной окружности ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 9,10,11

В остроугольном треугольнике $ABC$ ($AC>AB$ ) провели биссектрису $AK$ и медиану $AT$, последнюю продлили до пересечения с описанной окружностью треугольника в точке $D$. Точка $F$ симметрична $K$ относительно $T$. Даны углы треугольника $ABC$, найдите угол $FDA$.
Прислать комментарий     Решение


Задача 67100

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9,10,11

Прямая $\ell$, параллельная стороне $BC$ треугольника $ABC$, касается его вписанной окружности и пересекает его описанную окружность в точках $D$ и $E$. Пусть $I$ – центр вписанной окружности треугольника $ABC$. Докажите, что $AI^2 = AD\cdot AE$.
Прислать комментарий     Решение


Задача 102211

Темы:   [ Угол между касательной и хордой ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9

Окружность проходит через вершины A и B треугольника ABC и касается прямой AC в точке A. Найдите радиус окружности, если $ \angle$BAC = $ \alpha$, $ \angle$ABC = $ \beta$ и площадь треугольника ABC равна S.
Прислать комментарий     Решение


Задача 102518

Темы:   [ Угол между касательной и хордой ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9

Касательная, проведенная через вершину C вписанного в окружность треугольника ABC, пересекает продолжение стороны AB за вершину B в точке D. Известно, что радиус окружности равен 2, AC = $ \sqrt{12}$ и $ \angle$CDA + $ \angle$ACB = 2$ \angle$BAC. Найдите секущую AD.

Прислать комментарий     Решение


Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 1282]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .