ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Имеются абсолютно точные двухчашечные весы и набор из 50 гирь, веса которых равны $\operatorname{arctg} 1$, $\operatorname{arctg} \frac{1}{2}$, $\operatorname{arctg} \frac{1}{3}$, $\ldots$, $\operatorname{arctg}\frac{1}{50}$. Докажите, что можно выбрать 10 из них и разложить по 5 гирь на разные чаши весов так, чтобы установилось равновесие.

   Решение

Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 210]      



Задача 109573

Темы:   [ Тригонометрические неравенства ]
[ Выпуклость и вогнутость (прочее) ]
Сложность: 4+
Классы: 10,11

Докажите, что при всех x , 0<x<π /3 , справедливо неравенство

sin 2x+ cos x>1.

Прислать комментарий     Решение

Задача 111826

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Тригонометрические неравенства ]
Сложность: 4+
Классы: 9,10,11

Докажите, что при k>10 в произведении

f(x) = cos x cos 2x cos 3x .. cos 2k x

можно заменить один cos на sin так, что получится функция f1(x) , удовлетворяющая при всех действительных x неравенству |f1(x)| .
Прислать комментарий     Решение

Задача 73670

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Многочлен n-й степени имеет не более n корней ]
[ Тригонометрическая форма. Формула Муавра ]
Сложность: 5-
Классы: 10,11

Автор: Маресин В.

Для каждого натурального  n > 1  существует такое число cn, что для любого x произведение синуса числа x, синуса числа  x + π/n,  синуса числа
x + /n,  ..., наконец, синуса числа  x + (n – 1)π/n  равно произведению числа cn на синус числа nx. Докажите это и найдите величину cn.

Прислать комментарий     Решение

Задача 61202

Тема:   [ Тождественные преобразования (тригонометрия) ]
Сложность: 5
Классы: 10,11

Упростите выражения:
а) sin$ {\dfrac{\pi}{2n+1}}$sin$ {\dfrac{2\pi}{2n+1}}$sin$ {\dfrac{3\pi}{2n+1}}$...sin$ {\dfrac{n\pi}{2n+1}}$;
б) sin$ {\dfrac{\pi}{2n}}$sin$ {\dfrac{2\pi}{2n}}$sin$ {\dfrac{3\pi}{2n}}$...sin$ {\dfrac{(n-1)\pi}{2n}}$;
в) cos$ {\dfrac{\pi}{2n+1}}$cos$ {\dfrac{2\pi}{2n+1}}$cos$ {\dfrac{3\pi}{2n+1}}$...cos$ {\dfrac{n\pi}{2n+1}}$;
г) cos$ {\dfrac{\pi}{2n}}$cos$ {\dfrac{2\pi}{2n}}$cos$ {\dfrac{3\pi}{2n}}$...cos$ {\dfrac{(n-1)\pi}{2n}}$.

Прислать комментарий     Решение

Задача 67204

Темы:   [ Обратные тригонометрические функции ]
[ Взвешивания ]
Сложность: 5
Классы: 10,11

Имеются абсолютно точные двухчашечные весы и набор из 50 гирь, веса которых равны $\operatorname{arctg} 1$, $\operatorname{arctg} \frac{1}{2}$, $\operatorname{arctg} \frac{1}{3}$, $\ldots$, $\operatorname{arctg}\frac{1}{50}$. Докажите, что можно выбрать 10 из них и разложить по 5 гирь на разные чаши весов так, чтобы установилось равновесие.
Прислать комментарий     Решение


Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 210]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .